Patents by Inventor Xiaoxing Xi

Xiaoxing Xi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7090889
    Abstract: Boride thin films of conducting and superconducting materials are formed on silicon by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, on silicon substrates by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the silicon substrates.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: August 15, 2006
    Assignee: The Penn State Research Foundation
    Inventors: Zi-Kui Liu, Zhi-Jie Liu, Xiaoxing Xi
  • Publication number: 20060093861
    Abstract: Conducting and superconducting doped, magnesium boride materials are formed by a process which combines physical vapor deposition with chemical vapor deposition by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor and a dopant into the chamber which combines with the magnesium vapor to form the material. Embodiments include forming carbon-doped magnesium diboride film and powder with hybrid physical-chemical vapor deposition (HPCVD) by adding a carbon-containing metalorganic magnesium precursor, bis(methylcyclopentadienyl)magnesium, with a hydrogen carrier gas together with a borane precursor in a chamber having a source of magnesium vapor.
    Type: Application
    Filed: October 29, 2004
    Publication date: May 4, 2006
    Inventors: Alexej Pogrebnyakov, Xiaoxing Xi, Joan Redwing, Qi Li
  • Publication number: 20040234785
    Abstract: Boride thin films of conducting and superconducting materials are formed on silicon by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, on silicon substrates by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the silicon substrates.
    Type: Application
    Filed: February 24, 2004
    Publication date: November 25, 2004
    Inventors: Zi-Kui Liu, Zhi-Jie Liu, Xiaoxing Xi
  • Patent number: 6797341
    Abstract: Thin films of conducting and superconducting materials are formed by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, in high purity with superconducting properties on substrates typically used in the semiconductor industry by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the substrate.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: September 28, 2004
    Assignee: Penn State Research Foundation
    Inventors: Xianghui Zeng, Alexej Pogrebnyakov, Xiaoxing Xi, Joan M. Redwing, Zi-Kui Liu, Darrell G. Schlom
  • Publication number: 20030219911
    Abstract: Thin films of conducting and superconducting materials are formed by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, in high purity with superconducting properties on substrates typically used in the semiconductor industry by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the substrate.
    Type: Application
    Filed: March 25, 2003
    Publication date: November 27, 2003
    Inventors: Xianghui Zeng, Alexej Pogrebnyakov, Xiaoxing Xi, Joan M. Redwing, Zi-Kui Liu, D. G. Schlom
  • Patent number: 5274249
    Abstract: A superconducting field effect device includes a substrate with an epitaxial superconducting film upon it and an insulating layer above a thinner region of the film which protects the film from the atmosphere and isolates it from a gate electrode which is on the insulating layer above a channel region of the thin film, and the epitaxial film has thicker regions suitable for contact to source and drain electrodes. Gate electrodes may be isolated from and oppose both sides of the superconducting thin regions so that enhanced modulation of a current in the thin region is provided.The invention provides high speed and high efficiency switches and modulators.
    Type: Grant
    Filed: December 20, 1991
    Date of Patent: December 28, 1993
    Assignee: University of Maryland
    Inventors: Xiaoxing Xi, Chris Doughty, Thirumalai Venkatesan