Patents by Inventor Xiaoyan Jia

Xiaoyan Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967497
    Abstract: A method for cleaning semiconductor substrate without damaging patterned structure on the semiconductor substrate using ultra/mega sonic device comprises applying liquid into a space between a substrate and an ultra/mega sonic device; setting an ultra/mega sonic power supply at frequency f1 and power P1 to drive the ultra/mega sonic device; before bubble cavitation in the liquid damaging patterned structure on the substrate, setting the ultra/mega sonic power supply at zero output; after temperature inside bubble cooling down to a set temperature, setting the ultra/mega sonic power supply at frequency f1 and power P1 again; detecting power on time at power P1 and frequency f1 and power off time separately or detecting amplitude of each waveform output by the ultra/mega sonic power supply; comparing the detected power on time with a preset time ?1, or comparing the detected power off time with a preset time ?2, or comparing detected amplitude of each waveform with a preset value, if the detected power on time
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: April 23, 2024
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Jun Wang, Hui Wang, Fufa Chen, Fuping Chen, Jian Wang, Xi Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Liangzhi Xie, Xuejun Li
  • Patent number: 11911808
    Abstract: A system for controlling damages in cleaning a semiconductor wafer comprising features of patterned structures, the system comprising: a wafer holder for temporary restraining a semiconductor wafer during a cleaning process; an inlet for delivering a cleaning liquid over a surface of the semiconductor wafer; a sonic generator configured to alternately operate at a first frequency and a first power level for a first predetermined period of time and at a second frequency and a second power level for a second predetermined period of time, to impart sonic energy to the cleaning liquid, the first predetermined period of time and the second predetermined period of time consecutively following one another; and a controller programmed to provide the cleaning parameters, wherein at least one of the cleaning parameters is determined such that a percentage of damaged features as a result of the imparting sonic energy is lower than a predetermined threshold.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: February 27, 2024
    Assignee: ACM Research (Shanghai) Inc.
    Inventors: Hui Wang, Fufa Chen, Fuping Chen, Jian Wang, Xi Wang, Xiaoyan Zhang, Yinuo Jin, Zhaowei Jia, Liangzhi Xie, Jun Wang, Xuejun Li
  • Publication number: 20080009445
    Abstract: A novel class of cationic peptides having antimicrobial activity is provided. Exemplary peptides of the invention include KWKSFIKKLTSAAKKVVTTAKPLALIS (SEQ ID NO:3) and KGWGSFFKKAAHVGKHVGKAALTHYL (SEQ ID NO:15). Also provided are methods for inhibiting the growth of bacteria utilizing the peptides of the invention. Such methods are useful for the treatment of respiratory infections, such as in cystic fibrosis patients. Such methods are further useful for accelerating wound healing.
    Type: Application
    Filed: February 15, 2007
    Publication date: January 10, 2008
    Inventors: Robert Hancock, Monisha Gough, Aleksander Patrzykat, Donald Woods, Xiaoyan Jia
  • Patent number: 6818407
    Abstract: A novel class of cationic peptides having antimicrobial activity is provided. Exemplary peptides of the invention include KWKSFIKKLTSAAKKVVTTAKPLALIS (SEQ ID NO:3) and KGWGSFFKKAAHVGKHVGKAALTHYL (SEQ ID NO:15). Also provided are methods for inhibiting the growth of bacteria utilizing the peptides of the invention. Such methods are useful for the treatment of respiratory infections, such as in cystic fibrosis patients. Such methods are further useful for accelerating wound healing.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: November 16, 2004
    Assignee: The University of British Columbia
    Inventors: Robert E. W. Hancock, Monisha A. Gough, Aleksander Patrzykat, Donald Woods, Xiaoyan Jia
  • Publication number: 20040186272
    Abstract: A novel class of cationic peptides having antimicrobial activity is provided. Exemplary peptides of the invention include KWKSFIKKLTSAAKKVVTTAKPLALIS (SEQ ID NO:3) and KGWGSFFKKAAHVGKHVGKAALTHYL (SEQ ID NO:15). Also provided are methods for inhibiting the growth of bacteria utilizing the peptides of the invention. Such methods are useful for the treatment of respiratory infections, such as in cystic fibrosis patients. Such methods are further useful for accelerating wound healing.
    Type: Application
    Filed: April 12, 2004
    Publication date: September 23, 2004
    Inventors: Robert E. W. Hancock, Monisha A. Gough, Aleksander Patrzykat, Donald Woods, Xiaoyan Jia
  • Publication number: 20030096949
    Abstract: A novel class of cationic peptides having antimicrobial activity is provided. Exemplary peptides of the invention include KWKSFIKKLTSAAKKVVTTAKPLALIS (SEQ ID NO:3) and KGWGSFFKKAAHVGKHVGKAALTHYL (SEQ ID NO:15). Also provided are methods for inhibiting the growth of bacteria utilizing the peptides of the invention. Such methods are useful for the treatment of respiratory infections, such as in cystic fibrosis patients. Such methods are further useful for accelerating wound healing.
    Type: Application
    Filed: July 17, 2001
    Publication date: May 22, 2003
    Applicant: University of British Columbia
    Inventors: Robert E. W. Hancock, Monisha A. Gough, Aleksander Patrzykat, Donald Woods, Xiaoyan Jia
  • Patent number: 6288212
    Abstract: A novel class of cationic peptides having antimicrobial activity is provided. Exemplary peptides of the invention include KWKSFIKKLTSAAKKVVTTAKPLALIS (SEQ ID NO: 3) and KGWGSFFKKAAHVGKHVGKAALTHYL (SEQ ID NO: 15). Also provided are methods for inhibiting the growth of bacteria utilizing the peptides of the invention. Such methods are useful for the treatment of respiratory infections, such as in cystic fibrosis patients. Such methods are further useful for accelerating wound healing.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: September 11, 2001
    Assignee: The University of British Columbia
    Inventors: Robert E. W. Hancock, Monisha A. Gough, Aleksander Patrzykat, Donald Woods, Xiaoyan Jia