Patents by Inventor Xiaoye Wu

Xiaoye Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9320477
    Abstract: A CT system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray source configured to project an x-ray beam toward the object having a primary intensity, a detector configured to detect high frequency electromagnetic energy passing through the object and output imaging data, and a data acquisition system (DAS) connected to the detector and configured to receive the imaging data. The system also includes a computer programmed to obtain image projection data of the object from the DAS, correct the projection data using a scatter function that is based at least on a known characteristic of the x-ray beam, and generate images using the corrected projection data.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: April 26, 2016
    Assignee: General Electric Company
    Inventors: Xin Liu, Jiang Hsieh, Xiaoye Wu
  • Patent number: 9070181
    Abstract: A technique is provided for extracting one or more features of interest from one or more projection images. The technique includes accessing projection images comprising at least one feature of interest enhanced by a contrast agent, generating a contrast agent null image based on the projection images, generating a bone mask based on the contrast agent null image, and generating a bone extracted image based on the bone mask.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 30, 2015
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Xiaoye Wu, David Allen Langan, James Vradenburg Miller, Yogisha Mallya, Srikanth Suryanarayanan
  • Patent number: 9025815
    Abstract: A method is provided. The method includes acquiring projection data of an object from a plurality of pixels, reconstructing the acquired projection data from the plurality of pixels into a reconstructed image, performing material characterization and decomposition of an image volume of the reconstructed image to reduce a number of materials analyzed in the image volume to two basis materials. The method also includes generating a re-mapped image volume for at least one basis material of the two basis materials, and performing forward projection on at least the re-mapped image volume for the at least one basis material to produce a material-based projection. The method further includes generating multi-material corrected projections based on the material-based projection and a total projection attenuated by the object, which represents both of the two basis materials, wherein the multi-material corrected projections include linearized projections.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: May 5, 2015
    Assignee: General Electric Company
    Inventors: Xiaoye Wu, Jiang Hsieh, Paavana Sainath, Dan Xu, Yannan Jin, Girijesh Kumar Yadava, Adam Israel Cohen, Hewei Gao
  • Patent number: 8942341
    Abstract: A CT system includes an x-ray source configured to project an x-ray beam toward an object, a detector array, and a bowtie filter. The bowtie filter includes a first x-ray filtration region positioned to attenuate x-rays that pass through an isochannel of the detector array, a second x-ray filtration region positioned to attenuate x-rays that pass through channels of the detector array that are offcenter in a channel direction from the isochannel, and an x-ray attenuation material positionable to attenuate the x-rays that pass through the channels of the detector array that are offcenter in the channel direction from the isochannel. The CT system also includes a data acquisition system (DAS) connected to the detector array and configured to receive outputs from the detector array, and a computer programmed to acquire projections of imaging data of the object, and generate an image of the object using the imaging data.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: January 27, 2015
    Assignee: General Electric Company
    Inventors: Jiang Hsieh, Abdelaziz Ikhlef, Paavana Sainath, Xiaoye Wu, Roman Melnyk
  • Publication number: 20140328448
    Abstract: A method is provided. The method includes acquiring projection data of an object from a plurality of pixels, reconstructing the acquired projection data from the plurality of pixels into a reconstructed image, performing material characterization and decomposition of an image volume of the reconstructed image to reduce a number of materials analyzed in the image volume to two basis materials. The method also includes generating a re-mapped image volume for at least one basis material of the two basis materials, and performing forward projection on at least the re-mapped image volume for the at least one basis material to produce a material-based projection. The method further includes generating multi-material corrected projections based on the material-based projection and a total projection attenuated by the object, which represents both of the two basis materials, wherein the multi-material corrected projections include linearized projections.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Inventors: Xiaoye Wu, Jiang Hsieh, Paavana Sainath, Dan Xu, Yannan Jin, Girijesh Kumar Yadava, Adam Israel Cohen, Hewei Gao
  • Patent number: 8811709
    Abstract: A method is provided. The method includes acquiring projection data of an object from a plurality of pixels, reconstructing the acquired projection data from the plurality of pixels into a reconstructed image, performing material characterization and decomposition of an image volume of the reconstructed image to reduce a number of materials analyzed in the image volume to two basis materials. The method also includes generating a re-mapped image volume for at least one basis material of the two basis materials, and performing forward projection on at least the re-mapped image volume for the at least one basis material to produce a material-based projection. The method further includes generating multi-material corrected projections based on the material-based projection and a total projection attenuated by the object, which represents both of the two basis materials, wherein the multi-material corrected projections include linearized projections.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: August 19, 2014
    Assignee: General Electric Company
    Inventors: Xiaoye Wu, Jiang Hsieh, Paavana Sainath, Dan Xu, Yannan Jim, Girijesh Kumar Yadava, Adam Israel Cohen, Hewei Gao
  • Publication number: 20140133719
    Abstract: A method is provided. The method includes acquiring projection data of an object from a plurality of pixels, reconstructing the acquired projection data from the plurality of pixels into a reconstructed image, performing material characterization and decomposition of an image volume of the reconstructed image to reduce a number of materials analyzed in the image volume to two basis materials. The method also includes generating a re-mapped image volume for at least one basis material of the two basis materials, and performing forward projection on at least the re-mapped image volume for the at least one basis material to produce a material-based projection. The method further includes generating multi-material corrected projections based on the material-based projection and a total projection attenuated by the object, which represents both of the two basis materials, wherein the multi-material corrected projections include linearized projections.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Xiaoye Wu, Jiang Hsieh, Paavana Sainath, Dan Xu, Yannan Jin, Girijesh Kumar Yadava, Adam Israel Cohen, Hewei Gao
  • Patent number: 8611627
    Abstract: The present disclosure relates to the performing spectral calibration of a CT imaging system. In accordance with certain embodiments, spectral calibration phantoms are scanned while positioned on a table in the imaging volume of the CT imaging system. The scans of the calibration phantoms, in conjunction with air sans performed on the CT imaging system, are used to derive information about the deviation of the measured phantom scans from an ideal. The deviation information is in turn used to derive spectral calibration vectors that may be used with the CT imaging system.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: December 17, 2013
    Assignee: General Electric Company
    Inventors: Xiaoye Wu, Robert Franklin Senzig, Jing Zhao
  • Patent number: 8483361
    Abstract: Anode targets for an x-ray tube and methods for controlling x-ray tubes for x-ray systems are provided. One x-ray system includes a field-generator configured to generate a field, an electron beam generator configured to generate an electron beam directed towards a target and a voltage controller configured to control the electron beam generator to produce an electron beam at a first energy level and an electron beam at a second energy level. The x-ray system also includes a field-generator controller configured to control a field to deflect at least one of the electron beams, wherein the electron beam, at the first energy level, impinges on the target at a first contact position and the electron beam, at the second energy level, impinges on the target at a second contact position. The at the first contact position and at the second contact position is configured to filter x-rays.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 9, 2013
    Assignee: General Electric Company
    Inventors: Paavana Sainath, Xiaoye Wu, Girijesh K. Yadava
  • Patent number: 8483471
    Abstract: Approaches for deriving scatter information using inverse tracking of scattered X-rays is disclosed. In certain embodiments scattered rays are tracked from respective locations on a detector to a source of the X-ray radiation, as opposed to tracking schemes that proceed from the source to the detector. In one such approach, the inverse tracking is implemented using a density integrated volume that reduces the integration steps performed.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 9, 2013
    Assignee: General Electric Company
    Inventors: Xiaoye Wu, Jiang Hsieh, Paavana Sainath, Xin Liu
  • Patent number: 8401266
    Abstract: Methods and systems for correlated noise suppression are presented. The present correlated noise suppression technique estimates a correlation direction between noise values in a first and a second MD image corresponding to a first and a second basis material, respectively. The two MD images are diffused using the estimated correlation direction to generate a first and a second diffused image. Further, first and second noise masks are generated by subtracting the diffused image from the corresponding MD image. Edges in the first and the second MD images are processed with the first and second noise masks, respectively to generate a final first noise mask and a final second noise mask. The first MD image is then processed with the final second noise mask to generate a final first MD image and the second MD image is processed with the final first noise mask to generate a final second MD image.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: March 19, 2013
    Assignee: General Electric Company
    Inventors: Dan Xu, David Allen Langan, Xiaoye Wu, Jed Douglas Pack, Andrea Marie Schmitz
  • Patent number: 8396185
    Abstract: An X-ray tube includes a target and a cathode assembly. The cathode assembly includes a first filament configured to emit a first beam of electrons toward the target, a first gridding electrode coupled to the first filament, a second filament configured to emit a second beam of electrons toward the target, and a second gridding electrode coupled to the second filament.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: March 12, 2013
    Assignee: General Electric Company
    Inventors: Yun Zou, Brian Lounsberry, Carey Shawn Rogers, Sergio Lemaitre, Xiaoye Wu, Jizhong Chen, Floribertus P. Heukensfeldt Jansen
  • Patent number: 8396273
    Abstract: A method is provided that includes acquiring a first set of image data from X-rays produced at a first energy level and a second set of image data from X-rays produced at a second energy level. The method includes generating a first noise mask for a first basis material and a second noise mask for a second basis material and removing pixels corresponding to cross contaminating structural information from the first noise mask and the second noise mask. The method includes processing a first materially decomposed image generated from the first set of image data and the second set of digital data using the second noise mask after removal of the cross contaminating structural information and processing a second MD image generated from the first set of image data and the second set of digital data using the first noise mask after removal of the cross contaminating structural information.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: March 12, 2013
    Assignee: General Electric Company
    Inventors: Baojun Li, Naveen Stephan Chandra, Jed Douglas Pack, Jiang Hsieh, Xiaoye Wu, Mary Sue Kulpins
  • Publication number: 20130058450
    Abstract: A CT system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray source configured to project an x-ray beam toward the object having a primary intensity, a detector configured to detect high frequency electromagnetic energy passing through the object and output imaging data, and a data acquisition system (DAS) connected to the detector and configured to receive the imaging data. The system also includes a computer programmed to obtain image projection data of the object from the DAS, correct the projection data using a scatter function that is based at least on a known characteristic of the x-ray beam, and generate images using the corrected projection data.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Inventors: Xin Liu, Jiang Hsieh, Xiaoye Wu
  • Publication number: 20130058451
    Abstract: A CT system includes an x-ray source configured to project an x-ray beam toward an object, a detector array, and a bowtie filter. The bowtie filter includes a first x-ray filtration region positioned to attenuate x-rays that pass through an isochannel of the detector array, a second x-ray filtration region positioned to attenuate x-rays that pass through channels of the detector array that are offcenter in a channel direction from the isochannel, and an x-ray attenuation material positionable to attenuate the x-rays that pass through the channels of the detector array that are offcenter in the channel direction from the isochannel. The CT system also includes a data acquisition system (DAS) connected to the detector array and configured to receive outputs from the detector array, and a computer programmed to acquire projections of imaging data of the object, and generate an image of the object using the imaging data.
    Type: Application
    Filed: September 1, 2011
    Publication date: March 7, 2013
    Inventors: Jiang Hsieh, Abdelaziz Ikhlef, Paavana Sainath, Xiaoye Wu, Roman Melnyk
  • Patent number: 8385499
    Abstract: A two dimensional collimator assembly and method of manufacturing thereof is disclosed. The collimator assembly includes a wall structure constructed to form a two dimensional array of channels to collimate x-rays. The wall structure further includes a first portion positioned proximate the object to be scanned and configured to absorb scattered x-rays and a second portion formed integrally with the first portion and extending out from the first portion away from the object to be scanned. The first portion of the wall structure has a height greater than a height of the second portion of the wall structure. The second portion of the wall structure includes a reflective material coated thereon in each of the channels forming the two dimensional array of channels.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: February 26, 2013
    Assignee: General Electric Company
    Inventors: Zhaoping Wu, Haochuan Jiang, Joseph James Lacey, James S. Vartuli, Yunfeng Sun, Qun Deng, Xiaoye Wu, Kun Tao, Zhaohui Yang
  • Patent number: 8363779
    Abstract: A CT system includes a rotatable gantry having an opening for receiving an object to be scanned, and a controller. The controller is configured to apply a first kVp for a first time period, apply a second kVp for a second time period, integrate two or more view datasets during the first time period, integrate one or more view datasets during the second time period, and generate an image using the datasets integrated during the first time period and during the second time period.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: January 29, 2013
    Assignee: General Electric Company
    Inventors: Naveen Chandra, Xiaoye Wu, Thomas L. Toth, Jiang Hsieh
  • Publication number: 20130004050
    Abstract: Approaches for deriving scatter information using inverse tracking of scattered X-rays is disclosed. In certain embodiments scattered rays are tracked from respective locations on a detector to a source of the X-ray radiation, as opposed to tracking schemes that proceed from the source to the detector. In one such approach, the inverse tracking is implemented using a density integrated volume that reduces the integration steps performed.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: General Electric Company
    Inventors: Xiaoye Wu, Jiang Hsieh, Paavana Sainath, Xin Liu
  • Patent number: 8315352
    Abstract: An imaging system includes an x-ray source that emits a beam of x-rays toward an object, a detector that receives high frequency electromagnetic energy attenuated by the object, a data acquisition system (DAS) operably connected to the detector, and a computer operably connected to the DAS. The computer is programmed to compute detector coefficients based on a static low kVp measurement and a static high kVp measurement, capture incident spectra at high and low kVp during fast kVp switching, compute effective X-ray incident spectra at high and low kVp during fast kVp switching using the captured incident spectra, scan a water phantom and normalize the computed detector coefficients to water, adjust the computed effective X-ray incident spectra based on the normalized detector coefficients, compute basis material decomposition functions using the adjusted X-ray incident spectra, and generate one or more basis material density images using the computed basis material decomposition functions.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: November 20, 2012
    Assignee: General Electric Company
    Inventors: Xiaoye Wu, Dan Xu, Naveen Chandra, Zhanyu Ge, Jiang Hsieh, Daniel David Harrison, Mary Sue Kulpins
  • Publication number: 20120236984
    Abstract: A CT system includes a rotatable gantry having an opening for receiving an object to be scanned, and a controller. The controller is configured to apply a first kVp for a first time period, apply a second kVp for a second time period, integrate two or more view datasets during the first time period, integrate one or more view datasets during the second time period, and generate an image using the datasets integrated during the first time period and during the second time period.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Inventors: Naveen Chandra, Xiaoye Wu, Thomas L. Toth, Jiang Hsieh