Patents by Inventor Xiaoying Bao

Xiaoying Bao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250025860
    Abstract: Catalyst compositions and processes for making and using same. The catalyst composition can include up to 0.025 wt % of Pt and up to 10 wt % of a promoter that can include Sn, Cu, Au, Ag, Ga, a combination thereof, or a mixture thereof disposed on a support. The support can include at least 0.5 wt % of a Group 2 element. All weight percent values are based on the weight of the support.
    Type: Application
    Filed: November 14, 2022
    Publication date: January 23, 2025
    Inventor: Xiaoying Bao
  • Patent number: 12157111
    Abstract: Metal oxides are provided that have selective hydrogen combustion activity while also acting as solid oxygen carriers (SOCs). The metal oxides correspond to a metal oxide core of at least one metal having multiple oxidation states that is modified with an alkali metal oxide and/or alkali metal halogen (such as an alkali metal chloride). The resulting modified metal oxide, corresponding to a solid oxygen carrier, can allow for selective combustion of hydrogen while reducing or minimizing combustion of hydrocarbons, such as within a propane dehydrogenation environment. Additionally, it has been unexpectedly found that modifying the core metal oxide with the alkali metal oxide and/or alkali metal chloride can also mitigate coke formation on the solid oxygen carrier. Methods of using such metal oxides for selective hydrogen combustion are also provided.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: December 3, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Xiaoying Bao
  • Publication number: 20240327316
    Abstract: A hydrocarbon feed can be contacted with dehydrogenation catalyst particles to produce a conversion effluent that includes coked catalyst particles and dehydrogenated hydrocarbon(s). The coked catalyst particles can be contacted with an oxidant and a fuel to produce a combustion effluent that can include catalyst particles lean in coke and a combustion gas. The catalyst particles lean in coke can be contacted with an oxidative gas at an oxidizing temperature for a duration of at least 30 seconds to produce conditioned catalyst particles that can have an activity that can be less than the coked catalyst particles. The conditioned catalyst particles can be contacted with a reducing gas to produce regenerated catalyst particles that can have a dehydrogenation activity that can be greater than the coked catalyst particles. The dehydrogenated hydrocarbon(s) can be cooled, compressed, and a plurality of products can be separated from the compressed gaseous stream.
    Type: Application
    Filed: July 22, 2022
    Publication date: October 3, 2024
    Inventors: Saurabh S. Maduskar, Xiaoying Bao, Keith H. Kuechler
  • Publication number: 20240316544
    Abstract: Processes for regenerating an at least partially deactivated catalyst that can include a Group (10) element, an inorganic support, and a contaminant. The Group (10) element can have a concentration of from 0.06 wt % to 6 wt %, based on the weight of the inorganic support. The process can include (I) heating the deactivated catalyst using a heating gas mixture that includes H2O at a concentration >5 mol %, based on the total moles in the mixture to produce a precursor catalyst. The process can also include (II) providing an oxidative gas that includes ?5 mol % of H2O, based on the total moles in the oxidative gas, and (III) contacting the precursor catalyst at an oxidizing temperature with the oxidative gas for a duration of at least 30 seconds to produce an oxidized precursor catalyst. The process can also include (IV) obtaining a regenerated catalyst from the oxidized precursor catalyst.
    Type: Application
    Filed: July 25, 2022
    Publication date: September 26, 2024
    Inventor: Xiaoying Bao
  • Publication number: 20240308938
    Abstract: A method for forming an olefin, the method including: introducing a hydrocarbon feed stream into a reactor including a dehydrogenation catalyst; reacting the hydrocarbon feed stream with a dehydrogenation catalyst in the reactor to form a high temperature dehydrogenated product, the high temperature dehydrogenated product including at least a portion of the dehydrogenation catalyst; separating at least a portion of the dehydrogenation catalyst from the high temperature dehydrogenated product in a primary separation device and a secondary separation device downstream of and in fluid communication with the primary separation device; following the exit of high temperature dehydrogenation product from the secondary separation device, combining the high temperature dehydrogenation product with a quench stream to cool the high temperature dehydrogenation product and form an intermediate temperature dehydrogenation product, wherein the quench stream includes a hydrocarbon; and cooling the intermediate temperature de
    Type: Application
    Filed: July 5, 2022
    Publication date: September 19, 2024
    Inventors: Saurabh S. Maduskar, Keith H. Kuechler, Xiaoying Bao
  • Publication number: 20240294446
    Abstract: A hydrocarbon can be contacted with dehydrogenation catalyst particles to produce an effluent that can include coked catalyst particles and dehydrogenated hydrocarbon(s). A first stream rich in coked catalyst particles and a second stream rich in dehydrogenated hydrocarbon(s) and containing entrained catalyst particles can be separated from the effluent. The second stream can be contacted with a first quench medium to produce a cooled stream. The cooled stream can be contacted with a second quench medium within a quench tower. A gaseous stream that includes the dehydrogenated hydrocarbon(s), a first quench medium stream, and a slurry stream that includes the second quench medium and the entrained catalyst particles can be separated from the tower. The first quench medium can be recycled. The entrained catalyst particles can be separated from the slurry to provide recovered second quench medium and recovered entrained catalyst particles. The recovered second quench medium can be recycled.
    Type: Application
    Filed: July 20, 2022
    Publication date: September 5, 2024
    Inventors: Christian A. Diaz Urrutia, Xiaoying Bao, Keith H. Kuechler, Saurabh S. Maduskar, Arun K. Sharma, Russell T. Clay
  • Publication number: 20240271048
    Abstract: Processes for converting an alkane to an alkene. In some embodiments, the process can include contacting a hydrocarbon-containing feed with a first catalyst that can include Pt or a second catalyst that can include Cr within a conversion zone to effect dehydrogenation of at least a portion of the hydrocarbon-containing feed to produce an effluent that can include one or more dehydrogenated hydrocarbons and molecular hydrogen. The process can also include contacting the effluent with a solid oxygen carrier disposed within the conversion zone to effect combustion of at least a portion of the molecular hydrogen to produce a conversion product that can include the one or more dehydrogenated hydrocarbons and water. In some embodiments, contacting the feed with the first or second catalyst can occur in a first conversion zone and contacting the effluent with the solid oxygen carrier can occur in a second conversion zone.
    Type: Application
    Filed: May 25, 2022
    Publication date: August 15, 2024
    Inventor: Xiaoying Bao
  • Publication number: 20240269653
    Abstract: Catalyst compositions and processes for making and using same. The catalyst composition can include catalyst particles. The catalyst particles can include 0.001 wt % to 6 wt % of Pt and up to 10 wt % of a promoter that can include Sn, Cu, Au, Ag, Ga, or a combination thereof, or a mixture thereof disposed on a support. The support can include at least 0.5 wt % of a Group 2 element. All weight percent values are based on the weight of the support. The catalyst particles can have a median particle size in a range from 10 ?m to 500 pm. The catalyst particles can have an apparent loose bulk density in a range from 0.3 g/cm3 to 2 g/cm3, as measured according to ASTM D7481-18 modified with a 10, 25, or 50 mL graduated cylinder instead of a 100 or 250 mL graduated cylinder.
    Type: Application
    Filed: June 27, 2022
    Publication date: August 15, 2024
    Inventors: Aaron R. Garg, Xiaoying Bao, Colin L. Beswick, Chuansheng Bai, Christian A. Diaz Urrutia
  • Patent number: 12054456
    Abstract: Processes for upgrading a hydrocarbon. The process can include introducing, contacting, and halting introduction of a hydrocarbon-containing feed into a reaction zone. The feed can be contacted with a catalyst within the reaction zone to effect dehydrogenation, dehydroaromatization, and/or dehydrocyclization of the feed to produce a coked catalyst and an effluent. The process can include introducing, contacting, and halting introduction of an oxidant into the reaction zone. The oxidant can be contacted with the coked catalyst to effect combustion of the coke to produce a regenerated catalyst. The process can include introducing, contacting, and halting introduction of a reducing gas into the reaction zone. The reduction gas can be contacted with the regenerated catalyst to produce a regenerated and reduced catalyst. The process can include introducing and contacting an additional quantity of the feed with the regenerated and reduced catalyst to produce a re-coked catalyst and additional first effluent.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: August 6, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xiaoying Bao, John S. Coleman
  • Publication number: 20240226869
    Abstract: Processes for regenerating an at least partially deactivated catalyst that can include a Group (10) element, an inorganic support, and a contaminant. The Group (10) element can have a concentration of from 0.001 wt % to 6 wt %, based on the weight of the inorganic support. The process can include (I) heating the deactivated catalyst using a heating gas mixture that includes H2O at a concentration >5 mol %, based on the total moles in the mixture to produce a precursor catalyst. The process can also include (II) providing an oxidative gas that includes ?5 mol % of H2O, based on the total moles in the oxidative gas, and (III) contacting the precursor catalyst at an oxidizing temperature with the oxidative gas for a duration of at least 30 seconds to produce an oxidized precursor catalyst. The process can also include (IV) obtaining a regenerated catalyst from the oxidized precursor catalyst.
    Type: Application
    Filed: May 6, 2022
    Publication date: July 11, 2024
    Inventors: Xiaoying Bao, Christian A. Diaz Urrutia, Chuansheng Bai, John S. Coleman, Keith H. Kuechler
  • Publication number: 20240001344
    Abstract: Processes for calcining a catalyst. The process can include subjecting a synthesized catalyst that includes Pt disposed on a support to an initial calcination that includes exposing the catalyst to a first reducing gas or a first oxidizing gas to produce an initial calcined catalyst. The process can optionally include subjecting the initial calcined. catalyst to a cycle calcination that includes exposing the initial calcined catalyst to a second reducing gas and a second oxidizing gas to produce a cycle calcined catalyst. The process can optionally include subjecting the initial or the cycle calcined catalyst to a final calcination that includes exposing the initial or the cycle calcined catalyst to a third reducing gas or a third oxidizing gas. At least one of the cycle and the final calcination can be carried out. A calcined catalyst can be obtained at the end of the cycle or the final calcination.
    Type: Application
    Filed: June 13, 2023
    Publication date: January 4, 2024
    Inventors: Xiaoying Bao, Chuansheng Bai
  • Patent number: 11859136
    Abstract: Processes for upgrading a hydrocarbon. The process can include (I) contacting a hydrocarbon-containing feed with a catalyst that can include a Group 8-10 element or a compound thereof disposed on a support to effect conversion of the hydrocarbon-containing feed to produce a coked catalyst and an effluent. The process can also include (II) contacting the coked catalyst with an oxidant to effect combustion the coke to produce a regenerated catalyst. The process can also include (IIa) contacting the regenerated catalyst with a reducing gas to produce a regenerated and reduced catalyst. The process can also include (III) contacting an additional quantity of the hydrocarbon-containing feed with the regenerated and reduced catalyst. A cycle time from the contacting the hydrocarbon-containing feed with the catalyst in step (I) to the contacting the additional hydrocarbon-containing feed with the regenerated and reduced catalyst in step (III) can be ?1 hours.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: January 2, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Xiaoying Bao
  • Patent number: 11773336
    Abstract: Processes for upgrading a hydrocarbon. In some embodiments, the process can include contacting a hydrocarbon-containing feed with a first catalyst that can include a Group 8-10 element disposed on a support within a first conversion zone to effect dehydrogenation, dehydroaromatization, and/or dehydrocyclization of a portion of the feed to produce first conversion zone effluent that includes one or more upgraded hydrocarbons, molecular hydrogen, and unconverted feed. The process can also include contacting the first conversion zone effluent with a second catalyst that can include a Group 8-10 element disposed on a support within a second conversion zone to effect dehydrogenation, dehydroaromatization, and/or dehydrocyclization of at least a portion of the unconverted feed to produce a second conversion zone effluent that includes an additional quantity of upgraded hydrocarbon(s) and molecular hydrogen.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: October 3, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xiaoying Bao, James R. Lattner
  • Patent number: 11760703
    Abstract: Processes for upgrading a hydrocarbon. The process can include contacting a hydrocarbon-containing feed with fluidized catalyst particles that can include a Group 8-10 element or a compound thereof disposed on a support to effect one or more of dehydrogenation, dehydroaromatization, and dehydrocyclization of at least a portion of the hydrocarbon-containing feed to produce coked catalyst particles and an effluent. The process can also include contacting at least a portion of the coked catalyst particles with an oxidant to effect combustion of at least a portion of the coke to produce regenerated catalyst particles. The process can also include contacting at least a portion of the regenerated catalyst particles with a reducing gas to produce regenerated and reduced catalyst particles. The process can also include contacting an additional quantity of the hydrocarbon-containing feed with fluidized regenerated and reduced catalyst particles to produce additional effluent and re-coked catalyst particles.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: September 19, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xiaoying Bao, John S. Coleman
  • Patent number: 11760702
    Abstract: Processes for upgrading a hydrocarbon. The process can include contacting a hydrocarbon-containing feed with fluidized catalyst particles that can include a Group 8-10 element or a compound thereof disposed on a support to effect one or more of dehydrogenation, dehydroaromatization, and dehydrocyclization of at least a portion of the hydrocarbon-containing feed to produce a coked catalyst and an effluent. The process can also include contacting at least a portion of the coked catalyst particles with an oxidant to effect combustion of at least a portion of the coke to produce regenerated catalyst particles. The process can also include contacting an additional quantity of the hydrocarbon-containing feed with at least a portion of the regenerated catalyst particles to produce additional effluent and re-coked catalyst particles.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: September 19, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xiaoying Bao, John S. Coleman
  • Patent number: 11701645
    Abstract: A catalyst comprising a microporous crystalline metallosilicate having a Constraint Index of 12, or 10, or 8, or 6 or less, a binder, a Group 1 alkali metal or a compound thereof and/or a Group 2 alkaline earth metal or a compound thereof, a Group 10 metal or a compound thereof, and, optionally, a Group 11 metal or a compound thereof; wherein the catalyst is calcined in a first calcining step before the addition of the Group 10 metal or compound thereof and optionally the Group 11 metal or compound thereof; and wherein the first calcining step includes heating the catalyst to first temperatures of greater than 500° C.; and wherein the catalyst is calcined in a second calcining step after the addition of the Group 10 metal or compound thereof and optionally the Group 11 metal or compound thereof wherein the second calcining step includes heating the catalyst to temperatures of greater than 400° C.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: July 18, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Jeremy W. Bedard, Xiaoying Bao, Andrew P. Palermo, Nitish Mittal, Maria Milina, Doron Levin, William R. Gunther, Wenyih F. Lai, Tilman W. Beutel
  • Patent number: 11680029
    Abstract: Processes for upgrading a hydrocarbon. The process can include (I) contacting a hydrocarbon-containing feed with a catalyst that can include a Group 8-10 element or a compound thereof disposed on a support to effect one or more of dehydrogenation, dehydroaromatization, and dehydrocyclization of at least a portion of the hydrocarbon-containing feed to produce a coked catalyst and an effluent. The process can also include (II) contacting at least a portion of the coked catalyst with an oxidant to effect combustion of at least a portion of the coke to produce a regenerated catalyst. The process can also include (III) contacting an additional quantity of the hydrocarbon-containing feed with at least a portion of the regenerated catalyst. A cycle time from the contacting the hydrocarbon-containing feed with the catalyst in step (I) to the contacting the additional hydrocarbon-containing feed with the regenerated catalyst in step (III) can be ?5 hours.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: June 20, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Xiaoying Bao
  • Publication number: 20220282165
    Abstract: Processes for upgrading a hydrocarbon. The process can include (I) contacting a hydrocarbon-containing feed with a catalyst that can include a Group 8-10 element or a compound thereof disposed on a support to effect conversion of the hydrocarbon-containing feed to produce a coked catalyst and an effluent. The process can also include (II) contacting the coked catalyst with an oxidant to effect combustion the coke to produce a regenerated catalyst. The process can also include (IIa) contacting the regenerated catalyst with a reducing gas to produce a regenerated and reduced catalyst. The process can also include (III) contacting an additional quantity of the hydrocarbon-containing feed with the regenerated and reduced catalyst. A cycle time from the contacting the hydrocarbon-containing feed with the catalyst in step (I) to the contacting the additional hydrocarbon-containing feed with the regenerated and reduced catalyst in step (III) can be ?1 hours.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 8, 2022
    Inventor: Xiaoying Bao
  • Publication number: 20220281783
    Abstract: Processes for upgrading a hydrocarbon. The process can include introducing, contacting, and halting introduction of a hydrocarbon-containing feed into a reaction zone. The feed can be contacted with a catalyst within the reaction zone to effect dehydrogenation, dehydroaromatization, and/or dehydrocyclization of the feed to produce a coked catalyst and an effluent. The process can include introducing, contacting, and halting introduction of an oxidant into the reaction zone. The oxidant can be contacted with the coked catalyst to effect combustion of the coke to produce a regenerated catalyst. The process can include introducing, contacting, and halting introduction of a reducing gas into the reaction zone. The reduction gas can be contacted with the regenerated catalyst to produce a regenerated and reduced catalyst. The process can include introducing and contacting an additional quantity of the feed with the regenerated and reduced catalyst to produce a re-coked catalyst and additional first effluent.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 8, 2022
    Inventors: Xiaoying Bao, John S. Coleman
  • Publication number: 20220275289
    Abstract: Processes for upgrading a hydrocarbon. In some embodiments, the process can include contacting a hydrocarbon-containing feed with a first catalyst that can include a Group 8-10 element disposed on a support within a first conversion zone to effect dehydrogenation, dehydroaromatization, and/or dehydrocyclization of a portion of the feed to produce first conversion zone effluent that includes one or more upgraded hydrocarbons, molecular hydrogen, and unconverted feed. The process can also include contacting the first conversion zone effluent with a second catalyst that can include a Group 8-10 element disposed on a support within a second conversion zone to effect dehydrogenation, dehydroaromatization, and/or dehydrocyclization of at least a portion of the unconverted feed to produce a second conversion zone effluent that includes an additional quantity of upgraded hydrocarbon(s) and molecular hydrogen.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Xiaoying Bao, James R. Lattner