Patents by Inventor Xiaoying Ouyang

Xiaoying Ouyang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951458
    Abstract: Bulk catalysts comprised of nickel, molybdenum, tungsten and titanium and methods for synthesizing bulk catalysts are provided. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: June 29, 2023
    Date of Patent: April 9, 2024
    Assignee: Chevron U.S.A. Inc.
    Inventors: Xiaoying Ouyang, Viorel Duma, Alexander Kuperman, Ibrahim Uckung, Theodorus Ludovicus Michael Maesen, Axel Brait, Charles Wilson
  • Publication number: 20240010936
    Abstract: The present disclosure refers to systems and methods for efficiently converting a C1-C3 alkane such as natural gas to a liquid C2-C10 product and hydrogen. Generally, the process comprises flowing the C1-C3 alkane through a plurality of tubes within a vessel wherein the tubes house a catalyst for converting the C1-C3 alkane to the liquid C2-C10 product and hydrogen. The C1-C3 alkane is heated under suitable conditions to produce the liquid C2-C10 product and hydrogen. Advantageously, the C1-C3 alkane is heated by burning a fuel outside the tubes in fuel burning nozzles configured to transfer heat from the burning through the tubes.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Inventors: Lin LI, Huping LUO, Xiaoying OUYANG, Alexander KUPERMAN
  • Publication number: 20230347324
    Abstract: Bulk catalysts comprised of nickel, molybdenum, tungsten and titanium and methods for synthesizing bulk catalysts are provided. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: June 29, 2023
    Publication date: November 2, 2023
    Applicant: Chevron U.S.A. Inc.
    Inventors: Xiaoying OUYANG, Viorel DUMA, Alexander KUPERMAN, Ibrahim UCKUNG, Theodorus Ludovicus Michael MAESEN, Axel BRAIT, Charles WILSON
  • Patent number: 11781076
    Abstract: The present disclosure refers to systems and methods for efficiently converting a C1-C3 alkane such as natural gas to a liquid C2-C10 product and hydrogen. Generally, the process comprises flowing the C1-C3 alkane through a plurality of tubes within a vessel wherein the tubes house a catalyst for converting the C1-C3 alkane to the liquid C2-C10 product and hydrogen. The C1-C3 alkane is heated under suitable conditions to produce the liquid C2-C10 product and hydrogen. Advantageously, the C1-C3 alkane is heated by burning a fuel outside the tubes in fuel burning nozzles configured to transfer heat from the burning through the tubes.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: October 10, 2023
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Lin Li, Huping Luo, Xiaoying Ouyang, Alexander Kuperman
  • Publication number: 20230279301
    Abstract: The present disclosure refers to systems and methods for efficiently converting a C1-C3 alkane such as natural gas to a liquid C2-C10 product and hydrogen. Generally, the process comprises flowing the C1-C3 alkane through a plurality of tubes within a vessel wherein the tubes house a catalyst for converting the C1-C3 alkane to the liquid C2-C10 product and hydrogen. The C1-C3 alkane is heated under suitable conditions to produce the liquid C2-C10 product and hydrogen. Advantageously, the C1-C3 alkane is heated by burning a fuel outside the tubes in fuel burning nozzles configured to transfer heat from the burning through the tubes.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 7, 2023
    Inventors: Lin LI, Huping Luo, Xiaoying Ouyang, Alexander Kuperman
  • Publication number: 20230278859
    Abstract: The present disclosure refers to systems and methods for producing hydrogen among other products. In some embodiments the methods comprise sequentially conducting a cracking step in a fixed bed mode and conducting a flowing step in a fluidized bed mode. Such sequential processes may result in a number of advantages including, for example, regenerating the catalyst during the fluidized bed mode in a manner such that beneficial heat is generated for use in the endothermic cracking step.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 7, 2023
    Inventors: Huping LUO, Lin LI, Alexander KUPERMAN, Xiaoying OUYANG
  • Publication number: 20230278858
    Abstract: The present disclosure refers to systems, methods, and catalysts for conversion of a hydrocarbon to hydrogen. The catalyst typically comprises a matrix comprising fused silica, quartz, glass, a zeolite, Si3N4, SiC, SiCxOy wherein 4x+2y =4, SiOaNb wherein 2a+3b =4, BN, TiO2, ZrO2, Al2O3, CeO2, Nb2O5, La2O3, a perovskite, or any mixture thereof. A metal dopant is embedded in the matrix. The metal dopant comprises Fe, Ni, Co, Cu, Zn, Mn, or any mixture thereof.
    Type: Application
    Filed: March 1, 2023
    Publication date: September 7, 2023
    Inventors: Xiaoying Ouyang, Alexander Kuperman, Huping Luo, Lin Li
  • Patent number: 11731112
    Abstract: Bulk catalysts comprised of nickel, molybdenum, tungsten and titanium and methods for synthesizing bulk catalysts are provided. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: August 22, 2023
    Assignee: Chevron U.S.A. Inc.
    Inventors: Xiaoying Ouyang, Viorel Duma, Alexander Kuperman, Ibrahim Uckung, Theodorus Ludovicus Michael Maesen, Axel Brait, Charles Wilson
  • Patent number: 11707735
    Abstract: Multi-metallic bulk catalysts and methods for synthesizing the same are provided. The multi-metallic bulk catalysts contain nickel, molybdenum tungsten, yttrium, and optionally, copper, titanium and/or niobium. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: July 25, 2023
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Xiaoying Ouyang, Alexander E. Kuperman
  • Patent number: 11707732
    Abstract: Multi-metallic bulk catalysts and methods for synthesizing the same are provided. The multi-metallic bulk catalysts contain nickel, molybdenum tungsten, niobium, and optionally, titanium and/or copper. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: July 25, 2023
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Xiaoying Ouyang, Alexander E. Kuperman
  • Patent number: 11707733
    Abstract: Multi-metallic bulk catalysts and methods for synthesizing the same are provided. The multi-metallic bulk catalysts contain nickel, molybdenum tungsten, copper, and optionally, titanium and/or niobium. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: July 25, 2023
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Xiaoying Ouyang, Alexander E. Kuperman
  • Publication number: 20230055751
    Abstract: A layered catalyst reactor system and process for hydrotreatment of hydrocarbon feedstocks. The layered catalyst system reactors comprise vertical bed layers including a demetallization catalyst layer, multiple layers of supported hydrotreating catalyst layer, and multiple alternating layers of supported hydrocracking catalysts and self-supported hydrotreating catalysts. The arrangement of the catalyst layers mitigates the risk of temperature run-aways, with improvements in hydrotreatment performance.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 23, 2023
    Inventors: Axel Brait, Xiaoying Ouyang, Alexander Kuperman, Theodorus Ludovicus Michael Maesen
  • Patent number: 11577235
    Abstract: A layered catalyst reactor system and process for hydrotreatment of hydrocarbon feedstocks. The layered catalyst system reactors comprise vertical bed layers including a demetallization catalyst layer, multiple layers of supported hydrotreating catalyst layer, and multiple alternating layers of supported hydrocracking catalysts and self-supported hydrotreating catalysts. The arrangement of the catalyst layers mitigates the risk of temperature run-aways, with improvements in hydrotreatment performance.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 14, 2023
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Axel Brait, Xiaoying Ouyang, Alexander Kuperman, Theodorus Ludovicus Michael Maesen
  • Publication number: 20220401931
    Abstract: Multi-metallic bulk catalysts and methods for synthesizing the same are provided. The multi-metallic bulk catalysts contain nickel, molybdenum tungsten, yttrium, and optionally, copper, titanium and/or niobium. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: May 4, 2022
    Publication date: December 22, 2022
    Inventors: Xiaoying OUYANG, Alexander E. KUPERMAN
  • Publication number: 20220266227
    Abstract: Multi-metallic bulk catalysts and methods for synthesizing the same are provided. The multi-metallic bulk catalysts contain nickel, molybdenum tungsten, copper, and optionally, titanium and/or niobium. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: January 5, 2022
    Publication date: August 25, 2022
    Inventors: Xiaoying OUYANG, Alexander E. KUPERMAN
  • Publication number: 20220258138
    Abstract: Multi-metallic bulk catalysts and methods for synthesizing the same are provided. The multi-metallic bulk catalysts contain nickel, molybdenum tungsten, niobium, and optionally, titanium and/or copper. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: November 2, 2021
    Publication date: August 18, 2022
    Inventors: Xiaoying OUYANG, Alexander E. KUPERMAN
  • Patent number: 11389788
    Abstract: Provided is a scalable delamination of a SSZ-70 framework zeolite, without the need for sonication, which has been previously made difficult by the charged nature of the imidazolium structure-directing agents that are required for zeolite synthesis. The method comprises contacting a B-SSZ-70 zeolite precursor with a zinc source such as zinc nitrate and a fluoride source.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: July 19, 2022
    Assignees: Chevron U.S.A. Inc., The Regents of the University of California
    Inventors: Alexander Katz, Alexander Okrut, Martina Aigner, Xiaoying Ouyang, Stacey Ian Zones
  • Publication number: 20210339232
    Abstract: Bulk catalysts comprised of nickel, molybdenum, tungsten and titanium and methods for synthesizing bulk catalysts are provided. The catalysts are useful for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Application
    Filed: March 3, 2021
    Publication date: November 4, 2021
    Inventors: Xiaoying OUYANG, Viorel DUMA, Alexander KUPERMAN, Ibrahim UCKUNG, Theodorus Ludovicus Michael MAESEN, Axel BRAIT, Charles WILSON
  • Publication number: 20190247838
    Abstract: Provided is a scalable delamination of a SSZ-70 framework zeolite, without the need for sonication, which has been previously made difficult by the charged nature of the imidazolium structure-directing agents that are required for zeolite synthesis. The method comprises contacting a B-SSZ-70 zeolite precursor with a zinc source such as zinc nitrate and a fluoride source.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 15, 2019
    Applicants: Chevron U.S.A. Inc., The Regents of the University of California
    Inventors: Alexander KATZ, Alexander OKRUT, Martina AIGNER, Xiaoying OUYANG, Stacey Ian ZONES
  • Patent number: 9795951
    Abstract: Provided is a surfactant-free, single-step synthesis of delaminated aluminosilicate zeolites. The process comprises the step of heating a borosilicate zeolite precursor in a metal salt solution, e.g., an aluminum nitrate solution, zinc nitrate solution or manganese nitrate solution. The delaminated aluminosilicate zeolite product is then recovered from the solution.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: October 24, 2017
    Assignees: Chevron U.S.A. Inc., The Regents of the University of California
    Inventors: Xiaoying Ouyang, Alexander Katz, Stacey Ian Zones