Patents by Inventor Xiaoyong BAI

Xiaoyong BAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11499956
    Abstract: The present invention discloses a method for estimating soil organic carbon in karst area, including: step 1, establishing a soil organic carbon estimation model for the karst area; step 2, revising a soil depth; step 3, subtracting an exposure rate of bedrock for different types of soil and positive and negative terrains; step 4, revising a soil organic carbon density estimation formula for different types of soil and positive and negative terrains; and step 5, revising a soil organic carbon storage estimation method. This invention has solved the problem of overestimating soil organic carbon pool by existing methods, has improved the calculation accuracy, and has promoted the research process of soil carbon cycle in karst area.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 15, 2022
    Assignee: Institute of Geochemistry, Chinese Academy of Sciences
    Inventors: Xiaoyong Bai, Shijie Wang, Luhua Wu, Miao Zhou, Fei Chen, Huiwen Li, Yue Cao, Jianyong Xiao, Qinghuan Qian, Cheng Zeng, Qin Li, Jinfeng Wang, Yichao Tian, Guangjie Luo, Yujie Yang, Chaojun Li, Yuanhong Deng, Zeyin Hu
  • Patent number: 11493496
    Abstract: Methods and systems for estimating a surface runoff based on a pixel scale are disclosed. In some embodiments, the method includes the following steps: (1) calculating a vegetation canopy interception water storage, a litterfall interception water storage, and a soil water storage according to an obtained original remote sensing dataset of a climate element in a study area; (2) calculating a vegetation-soil interception water conservation in the study area based on an established vegetation-soil interception water conservation estimation model according to the vegetation canopy interception water storage, the litterfall interception water storage, the soil water storage, and monthly precipitation; and (3) calculating a surface runoff in the study area based on an established water balance water conservation estimation model according to the monthly precipitation, monthly snowmelt, monthly actual evapotranspiration, and the vegetation-soil interception water conservation in the study area.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 8, 2022
    Assignee: Institute of Geochemistry, Chinese Academy of Sciences
    Inventors: Xiaoyong Bai, Shijie Wang, Luhua Wu, Fei Chen, Miao Zhou, Yichao Tian, Guangjie Luo, Qin Li, Jinfeng Wang, Yuanhuan Xie, Yujie Yang, Chaojun Li, Yuanhong Deng, Zeyin Hu, Shiqi Tian, Qian Lu, Chen Ran, Min Liu
  • Publication number: 20220245653
    Abstract: A system including one or more processors and one or more non-transitory computer-readable media storing computing instructions configured to run on the one or more processors and perform: receiving, from a user, one or more pre-designed test parameters of an experiment; generating an audience list table comprising one or more identifications (IDs), wherein the one or more IDs link to one or more identification (ID) levels; removing, using identification (ID) mapping, each member of the audience who has an ID that does not satisfy one or more constraints of the one or more ID levels based on the one or more pre-designed test parameters; evaluating, using an evaluation algorithm, whether bias exists for each treatment group of two or more treatment groups; launching the experiment on the members remaining in the audience; and causing at least one result of the experiment to be displayed. Other embodiments are disclosed.
    Type: Application
    Filed: January 31, 2021
    Publication date: August 4, 2022
    Applicant: Walmart Apollo, LLC
    Inventors: Xiaoyong Bai, Wei Shen, Qianqian Zhang, Boning Zhang
  • Patent number: 11300709
    Abstract: The present invention relates to a method for determining a surface runoff yield in a vegetation-covered area. The present invention improves and integrates a water conservation model with a Zhang's model based on remote sensing data. The present invention constructs a new method for calculating a surface runoff yield in a vegetation-covered area on a spatial pixel scale based on a water balance equation of the vegetation-covered area. This method utilizes real-time dynamic multi-temporal remote sensing data to calculate a vegetation canopy interception water storage, a vegetation litterfall interception water storage, a soil water storage change, a vegetation water conservation, a vegetation evapotranspiration and a vegetation runoff yield. The method realizes the long-term dynamic estimation of the surface runoff yield in regional and global vegetation-covered areas on a spatial pixel scale. It has the advantages of being efficient, fast, accurate, and applicable to large-scale vegetation-covered areas.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 12, 2022
    Assignee: INSTITUTE OF GEOCHEMISTRY, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiaoyong Bai, Shijie Wang, Luhua Wu, Fei Chen, Miao Zhou, Yichao Tian, Guangjie Luo, Qin Li, Jinfeng Wang, Yuanhuan Xie, Yujie Yang, Chaojun Li, Yuanhong Deng, Zeyin Hu, Shiqi Tian, Qian Lu, Chen Ran, Min Liu
  • Publication number: 20210341445
    Abstract: The present invention relates to a method for monitoring a change of vegetation water conservation. The method includes: obtaining global land water storage change data, precipitation, actual evapotranspiration, soil moisture storage, snowmelt, snow water storage, surface water storage, groundwater storage, change in surface and groundwater resources, litterfall interception water storage, average natural water content, maximum water holding capacity and litterfall accumulation; preprocessing the above data, and calculating a change of vegetation canopy water storage; calculating a change of litterfall interception water storage; calculating a change of soil moisture storage; and determining a water conservation change according to the change of vegetation canopy water storage, the change of litterfall interception water storage and the soil moisture change. The method provides new technical support and reference for the evaluation of ecological effects and water conservation during ecological restoration.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Inventors: Xiaoyong BAI, Shijie WANG, Luhua WU, Fei CHEN, Miao ZHOU, Yichao TIAN, Guangjie LUO, Qin LI, Jinfeng WANG, Yuanhuan XIE, Yujie YANG, Chaojun LI, Yuanhong DENG, Zeyin HU, Shiqi TIAN, Qian LU, Chen RAN, Min LIU
  • Publication number: 20210341454
    Abstract: Methods and systems for estimating a surface runoff based on a pixel scale are disclosed. In some embodiments, the method includes the following steps: (1) calculating a vegetation canopy interception water storage, a litterfall interception water storage, and a soil water storage according to an obtained original remote sensing dataset of a climate element in a study area; (2) calculating a vegetation-soil interception water conservation in the study area based on an established vegetation-soil interception water conservation estimation model according to the vegetation canopy interception water storage, the litterfall interception water storage, the soil water storage, and monthly precipitation; and (3) calculating a surface runoff in the study area based on an established water balance water conservation estimation model according to the monthly precipitation, monthly snowmelt, monthly actual evapotranspiration, and the vegetation-soil interception water conservation in the study area.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Applicant: Institute of Geochemistry, Chinese Academy of Sciences
    Inventors: Xiaoyong BAI, Shijie Wang, Luhua WU, Fei CHEN, Miao ZHOU, Yichao TIAN, Guangjie LUO, Qin LI, Jinfeng WANG, Yuanhuan XIE, Yujie YANG, Chaojun LI, Yuanhong DENG, Zeyin HU, Shiqi TIAN, Qian LU, Chen RAN, Min Liu
  • Publication number: 20210341647
    Abstract: The present invention relates to a method for determining a surface runoff yield in a vegetation-covered area. The present invention improves and integrates a water conservation model with a Zhang's model based on remote sensing data. The present invention constructs a new method for calculating a surface runoff yield in a vegetation-covered area on a spatial pixel scale based on a water balance equation of the vegetation-covered area. This method utilizes real-time dynamic multi-temporal remote sensing data to calculate a vegetation canopy interception water storage, a vegetation litterfall interception water storage, a soil water storage change, a vegetation water conservation, a vegetation evapotranspiration and a vegetation runoff yield. The method realizes the long-term dynamic estimation of the surface runoff yield in regional and global vegetation-covered areas on a spatial pixel scale. It has the advantages of being efficient, fast, accurate, and applicable to large-scale vegetation-covered areas.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Inventors: Xiaoyong BAI, Shijie WANG, Luhua WU, Fei CHEN, Miao ZHOU, Yichao TIAN, Guangjie LUO, Qin LI, Jinfeng WANG, Yuanhuan XIE, Yujie YANG, Chaojun LI, Yuanhong DENG, Zeyin HU, Shiqi TIAN, Qian LU, Chen RAN, Min LIU
  • Publication number: 20210341453
    Abstract: Methods and systems for estimating a groundwater recharge based on a pixel scale are disclosed. In some embodiments, a method includes the following steps: (1) obtaining an original remote sensing dataset of a climate element in a study area and a pixel area of the study area; (2) calculating a total water resource yield in the study area by a water balance equation according to the original remote sensing dataset of the climate element and the pixel area of the study area; and (3) estimating the groundwater recharge in the study area according to the total water resource yield and the monthly runoff in the study area. The original remote sensing dataset of the climate element includes monthly precipitation per unit pixel area, monthly actual evapotranspiration per unit pixel area, monthly snowmelt per unit pixel area, monthly soil moisture change per unit pixel area, and monthly runoff.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Applicant: Institute of Geochemistry, Chinese Academy of Sciences
    Inventors: Xiaoyong BAI, Shijie WANG, Luhua WU, Fei CHEN, Miao ZHOU, Yichao TIAN, Guangjie LUO, Qin LI, Jinfeng WANG, Yuanhuan XIE, Yujie Yang, Chaojun LI, Yuanhong DENG, Zeyin HU, Shiqi TIAN, Qian LU, Chen RAN, Min LIU
  • Publication number: 20210341336
    Abstract: The present invention relates to a device for detecting concentration of heavy metals. The device for detecting concentration of heavy metals acquires spectrum information of a carrier to be tested by utilizing a spectrum information acquiring system, a receiving system and a processing system. The device further processes the spectrum information to obtain the type of the carrier to be tested and the corresponding concentration of heavy metals. Therefore, the efficiency of acquiring the whole concentration of the heavy metals is remarkably improved. Furthermore, based on the specific structure of the device for detecting concentration of heavy metals provided by the present invention, the device for detecting concentration of heavy metals has the characteristics of simple structure and low costs.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Inventors: Xiaoyong BAI, Shijie WANG, Shiqi TIAN, Qian LU, Jinfeng WANG, Qin LI, Luhua WU, Yujie YANG, Chaojun LI, Zeyin HU, Fei CHEN, Yuanhong DENG
  • Patent number: 11139953
    Abstract: A method of and apparatus for executing a cryptographic cipher is described. The method includes acts of receiving a first finite field of data and key value represented by a first encryption standard including a first and second operation, transforming the first finite field of data and key value into a second finite field of data and key value represented by a second encryption standard, transforming the first operation and the second operation into a first modified operation and a second modified operation represented by the second encryption standard, executing the first modified operation on the second finite field of data and key value to generate a third finite field of data, executing the second modified operation on the third finite field of data to generate a fourth finite field of data, which is transformed into a fifth finite field of data represented by the first encryption standard.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: October 5, 2021
    Assignee: BEIJING LIANSHI NETWORKS TECHNOLOGY CO., LTD.
    Inventors: Wenbo Mao, Xiaoyong Bai, Long Wen
  • Publication number: 20200408731
    Abstract: The present invention discloses a method for estimating soil organic carbon in karst area, including: step 1, establishing a soil organic carbon estimation model for the karst area; step 2, revising a soil depth; step 3, subtracting an exposure rate of bedrock for different types of soil and positive and negative terrains; step 4, revising a soil organic carbon density estimation formula for different types of soil and positive and negative terrains; and step 5, revising a soil organic carbon storage estimation method. This invention has solved the problem of overestimating soil organic carbon pool by existing methods, has improved the calculation accuracy, and has promoted the research process of soil carbon cycle in karst area.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 31, 2020
    Inventors: Xiaoyong Bai, Shijie Wang, Luhua Wu, Miao Zhou, Fei Chen, Huiwen Li, Yue Cao, Jianyong Xiao, Qinghuan Qian, Cheng Zeng, Qin Li, Jinfeng Wang, Yichao Tian, Guangjie Luo, Yujie Yang, Chaojun Li, Yuanhong Deng, Zeyin Hu
  • Publication number: 20200099510
    Abstract: A method of and apparatus for executing a cryptographic cipher is described. The method includes acts of receiving a first finite field of data and key value represented by a first encryption standard including a first and second operation, transforming the first finite field of data and key value into a second finite field of data and key value represented by a second encryption standard, transforming the first operation and the second operation into a first modified operation and a second modified operation represented by the second encryption standard, executing the first modified operation on the second finite field of data and key value to generate a third finite field of data, executing the second modified operation on the third finite field of data to generate a fourth finite field of data, which is transformed into a fifth finite field of data represented by the first encryption standard.
    Type: Application
    Filed: April 12, 2017
    Publication date: March 26, 2020
    Inventors: Wenbo MAO, Xiaoyong BAI, Long WEN