Patents by Inventor Xiaoyu Hong

Xiaoyu Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210210478
    Abstract: Embodiments disclosed herein include electronic packages for optical to electrical switching. In an embodiment, an electronic package comprises a first package substrate and a second package substrate attached to the first package substrate. In an embodiment, a die is attached to the second package substrate. In an embodiment, a plurality of photonic engines are attached to a first surface and a second surface of the first package substrate. In an embodiment, the plurality of photonic engines are communicatively coupled to the die through the first package substrate and the second package substrate.
    Type: Application
    Filed: March 3, 2021
    Publication date: July 8, 2021
    Inventors: Susheel JADHAV, Juan DOMINGUEZ, Ankur AGRAWAL, Kenneth BROWN, Yi LI, Jing CHEN, Aditi MALLIK, Xiaoyu HONG, Thomas LILJEBERG, Andrew C. ALDUINO, Ling LIAO, David HUI, Ren-Kang CHIOU, Harinadh POTLURI, Hari MAHALINGAM, Lobna KAMYAB, Sasanka KANUPARTHI, Sushrutha Reddy GUJJULA, Saeed FATHOLOLOUMI, Priyanka DOBRIYAL, Boping XIE, Abiola AWUJOOLA, Vladimir TAMARKIN, Keith MEASE, Stephen KEELE, David SCHWEITZER, Brent ROTHERMEL, Ning TANG, Suresh POTHUKUCHI, Srikant NEKKANTY, Zhichao ZHANG, Kaiyuan ZENG, Baikuan WANG, Donald TRAN, Ravindranath MAHAJAN, Baris BICEN, Grant SMITH
  • Patent number: 6828267
    Abstract: Described are a MgCl2 based carrier containing Ti(OR)4 and ROH, wherein R is C1˜C7alkyl, and solid catalyst components made from said carrier. The carrier and the solid catalyst components according to the present invention are characterized in that their X-rays powder diffraction spectra, one or two main diffraction lines or a halo appears at 2&thgr; of 2˜14° and in the range of 2&thgr; of 14˜50°, there are the characteristic diffraction lines of anhydrous &agr;-MgCl2. The carrier according to the present invention is directly obtained by reacting anhydrous magnesium chloride with an alcohol and can be used to prepare solid catalyst components without dealcoholization, and the solid catalyst components exhibit high polymerization activity when employed for polymerizing ethylene.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: December 7, 2004
    Assignees: China Petro Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Zhenhua Jing, Rong Junfeng, Wei Zhang, Xiaoyu Hong, Xuhua Zhou
  • Patent number: 6444742
    Abstract: Disclosed are polyolefin/clay nanocomposites, comprising 40 to 99.9% by weight of polyolefins and 0.1 to 60% by weight of sepiolite-palygorskite type clays selected from the group essentially consisting of sepiolite and attapulgite. The nanocomposites in accordance with the present invention have excellent mechanical properties and thermal resistance. Also disclosed is a process for preparing the polyolefin/clay nanocomposites according to the present invention.
    Type: Grant
    Filed: November 26, 1999
    Date of Patent: September 3, 2002
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing SINOPEC
    Inventors: Junfeng Rong, Zhenhua Jing, Xiaoyu Hong, Wei Zhang
  • Patent number: 6417132
    Abstract: The present invention relates to a process for preparing a carrier used in olefin polymerization catalysts, comprising suspending anhydrous magnesium chloride in an inert hydrocarbon solvent and then under stirring, activating the magnesium chloride with a C2-C8 alcohol at a temperature of 30° C. to 200° C., with the molar ratio of said alcohol to said magnesium chloride being in the range of 0.05 to 2.5. Moreover, in order to make the resultant catalysts more active, the process according to the present invention can further include a pre-dispersing step conducted prior to the activation step, wherein the dispersing agent is alkoxides of titanium or C3-C8 alcohols and the molar ratio of said dispersing agent to said magnesium chloride is 0.01 to 2.0. The catalyst prepared from the resultant carrier is suitable for polymerizing ethylene or compolymerizing ethylene with alpha-olefin.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: July 9, 2002
    Assignee: China Peirochemical Corporation
    Inventors: Junfeng Rong, Wei Zhang, Zhenhua Jing, Xiaoyu Hong
  • Publication number: 20020035028
    Abstract: Described are a MgCl2 based carrier containing Ti(OR)4 and ROH, wherein R is C1˜C7alkyl, and solid catalyst components made from said carrier. The carrier and the solid catalyst components according to the present invention are characterized in that in their X-rays powder diffraction spectra, one or two main diffraction lines or a halo appears at 2&thgr; of 2˜14° and in the range of 2&thgr; of 14˜50°, there are the characteristic diffraction lines of anhydrous &agr;-MgCl2. The carrier according to the present invention is directly obtained by reacting anhydrous magnesium chloride with an alcohol and can be used to prepare solid catalyst components without dealcoholization, and the solid catalyst components exhibit high polymerization activity when employed for polymerizing ethylene.
    Type: Application
    Filed: May 18, 2001
    Publication date: March 21, 2002
    Applicant: China Petro Chemical Corporation
    Inventors: Zhenhua Jing, Rong Junfeng, Wei Zhang, Xiaoyu Hong, Xuhua Zhou
  • Patent number: 5728640
    Abstract: A process for preparing a supported metallocene/aluminoxane solid catalyst comprises preparing a water-in-oil emulsion of water and an inert solvent by using an emulsifier, adding dropwise the emulsion to a solution of an organoaluminium compound in an inert solvent to carry out the reaction to obtain a suspension of the particulate aluminoxane, followed by adding a solution of a metallocene to the above suspension to support the metallocene on the aluminoxane. The solid catalyst thus obtained can be used in the polymerization and copolymerization of olefins. Polymerization can be carried out by slurry polymerization, bulk polymerization, gas phase polymerization, etc.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: March 17, 1998
    Assignee: China Petrochemical Corp. and Research Institute of Petroleum Processing Sinopec
    Inventors: Bing Lu, Jinmei Wang, Xiaoyu Hong, Zhenhua Jing