Patents by Inventor XIAOYU SU

XIAOYU SU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139469
    Abstract: The present disclosure relates to a minimally invasive intervention device and a minimally invasive intervention apparatus including the minimally invasive intervention device. Minimally invasive intervention devices includes an inner layer, an intermediate layer, and an outer layer, the intermediate layer covers an outer peripheral surface of the inner layer, and the outer layer covers an outer peripheral surface of the intermediate layer; and the intermediate layer includes a plurality of line bodies, at least some of the line bodies can transmit signals and/or electric energy.
    Type: Application
    Filed: October 31, 2023
    Publication date: May 2, 2024
    Inventors: Xiaoyu Su, Tianyun Huang, Huiling Duan
  • Publication number: 20240123499
    Abstract: A method for preparing Mg-RE alloys with high strength and ductility using selective laser melting (SLM) additive manufacturing technology includes the following steps of: A. preparing Mg-RE-(Zn)—Zr pre-alloyed spherical powder by gas atomization; B. molding the Mg-RE-(Zn)—Zr pre-alloyed spherical powder using SLM to obtain the Mg-RE alloys with high strength and ductility; and C. conducting heat treatment on the Mg-RE alloys prepared in step B: solid solution+aging treatment or only aging treatment The method adjusts and controls microstructure and mechanical properties of the alloys by adjusting and controlling process parameters of SLM (laser power, scanning speed, hatch spacing, spot diameter, layer thickness, interlayer rotation angle, substrate preheating temperature, partition width and overlapping area width) and process parameters of subsequent heat treatment (temperature and time) to prepare the Mg-RE-(Zn)—Zr alloys with high strength and ductility using SLM process for the first time.
    Type: Application
    Filed: September 27, 2020
    Publication date: April 18, 2024
    Applicant: SHANGHAI JIAO TONG UNIVERSITY
    Inventors: Yujuan WU, Qingchen DENG, Liming PENG, Yuanhang LUO, Ning SU, Zhiyu CHANG, Xiaoyu XUE
  • Patent number: 10049503
    Abstract: The invention provides a line guided 3D model reshaping method, including: 1. extracting a contour of an object from an image, and selecting a contour or main skeleton to create a 2D line database; 2. extracting a 3D editable line, retrieving and suggesting an appropriate 2D contour or skeleton from 2D line database; 3. establishing point-to-point correspondence by matching 2D contour or skeleton to 3D editable line, and reshaping the model using parametric deformation method. By the method, 2D contour or skeleton appropriate for 3D model editable line is automatically suggested from 2D line database of multiple classes of objects to guide 3D model reshaping, and fewer user interactions are required in extracting from input 3D model editable lines such as axes, cross-sections and outlines and producing various types of reshaped models by using parametric deformation method, thereby helping user to design desirable 3D model with speed and ease.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: August 14, 2018
    Assignee: BEIHANG UNIVERSITY
    Inventors: Xiaowu Chen, Qiang Fu, Qinping Zhao, Xiaoyu Su
  • Patent number: 9916695
    Abstract: The invention provides a structure self-adaptive 3D model editing method, which includes: given a 3D model library, clustering 3D models of same category according to structures; learning a design knowledge prior between components of 3D models in same group; learning a structure switching rule between 3D models in different groups; after user edits a 3D model component, determining a final group of the model according to inter-group design knowledge prior, and editing other components of the model according to intra-group design knowledge prior, so that the model as a whole satisfies design knowledge priors of a category of 3D models. Through editing few components by the user, other components of the model can be optimized automatically and the edited 3D model satisfying prior designs of the model library can be obtained. The invention can be applied to fields of 3D model editing and constructing, computer aided design etc.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: March 13, 2018
    Assignee: BEIHANG UNIVERSITY
    Inventors: Xiaowu Chen, Qiang Fu, Qinping Zhao, Xiaoyu Su
  • Publication number: 20170221274
    Abstract: The invention provides a structure self-adaptive 3D model editing method, which includes: given a 3D model library, clustering 3D models of same category according to structures; learning a design knowledge prior between components of 3D models in same group; learning a structure switching rule between 3D models in different groups; after user edits a 3D model component, determining a final group of the model according to inter-group design knowledge prior, and editing other components of the model according to intra-group design knowledge prior, so that the model as a whole satisfies design knowledge priors of a category of 3D models. Through editing few components by the user, other components of the model can be optimized automatically and the edited 3D model satisfying prior designs of the model library can be obtained. The invention can be applied to fields of 3D model editing and constructing, computer aided design etc.
    Type: Application
    Filed: January 12, 2017
    Publication date: August 3, 2017
    Inventors: XIAOWU CHEN, QIANG FU, QINPING ZHAO, XIAOYU SU
  • Publication number: 20170178402
    Abstract: The invention provides a line guided 3D model reshaping method, including: 1. extracting a contour of an object from an image, and selecting a contour or main skeleton to create a 2D line database; 2. extracting a 3D editable line, retrieving and suggesting an appropriate 2D contour or skeleton from 2D line database; 3. establishing point-to-point correspondence by matching 2D contour or skeleton to 3D editable line, and reshaping the model using parametric deformation method. By the method, 2D contour or skeleton appropriate for 3D model editable line is automatically suggested from 2D line database of multiple classes of objects to guide 3D model reshaping, and fewer user interactions are required in extracting from input 3D model editable lines such as axes, cross-sections and outlines and producing various types of reshaped models by using parametric deformation method, thereby helping user to design desirable 3D model with speed and ease.
    Type: Application
    Filed: October 28, 2016
    Publication date: June 22, 2017
    Inventors: XIAOWU CHEN, QIANG FU, QINPING ZHAO, XIAOYU SU