Patents by Inventor Xijia Lu

Xijia Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180073430
    Abstract: The present disclosure relates to a power production system that is adapted to achieve high efficiency power production using partial oxidation of a solid or liquid fuel to form a partially oxidized stream that comprises a fuel gas. This fuel gas stream can be one or more of quenched, filtered, and cooled before being directed to a combustor of a power production system as the combustion fuel. The partially oxidized stream is combined with a compressed recycle CO2 stream and oxygen. The combustion stream is expanded across a turbine to produce power and passed through a recuperator heat exchanger. The expanded and cooled exhaust stream can be further processed to provide the recycle CO2 stream, which is compressed and passed through one or more recuperator heat exchangers in a manner useful to provide increased efficiency to the combined systems.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 15, 2018
    Inventors: Brock Alan Forrest, Xijia Lu, Rodney John Allam, Jeremy Eron Fetvedt, Miles R. Palmer
  • Publication number: 20170241338
    Abstract: The present disclosure relates to a power production system that is adapted to achieve high efficiency power production with carbon capture when using a solid or liquid hydrocarbon or carbonaceous fuel. More particularly, the solid or liquid fuel first is partially oxidized in a partial oxidation reactor that is configured to provide an output stream that is enriched in methane content. The resulting partially oxidized stream can be cooled, filtered, additionally cooled, and then directed to a combustor of a power production system as the combustion fuel. The partially oxidized stream is combined with a compressed recycle CO2 stream and oxygen. The combustion stream is expanded across a turbine to produce power and passed through a recuperator heat exchanger. The recycle CO2 stream is compressed and passed through the recuperator heat exchanger and optionally the POX heat exchanger in a manner useful to provide increased efficiency to the combined systems.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 24, 2017
    Inventors: Brock Alan Forrest, Xijia Lu
  • Publication number: 20170113185
    Abstract: The present disclosure relates to a system for removing a pollutant from a power generation cycle that utilizes a high pressure circulating fluid. The system includes a first direct contact cooling tower configured to cool the high pressure circulating fluid and condense a fluid stream that removes SO2 from the circulating fluid. A first recirculating pump fluidly communicates with the first direct contact cooling tower. The first tower includes an outlet configured to circulate a cooled CO2 product stream, and a second direct contact cooling tower is configured to receive at least a portion of the cooled CO2 product stream from the outlet. The second direct contact cooling tower is configured to cool the CO2 product stream and condense a fluid stream that removes NOx from the CO2 product stream. A second recirculating pump fluidly communicates with the second tower. An associated method is provided.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 27, 2017
    Inventors: Rodney John Allam, Xijia Lu, Scott Thomas Martin