Patents by Inventor Xilin Peng

Xilin Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9799784
    Abstract: A photovoltaic device is disclosed including at least one Cadmium Sulfide Telluride (CdSxTe1?x) layer as are methods of forming such a photovoltaic device.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 24, 2017
    Assignee: First Solar, Inc.
    Inventors: Arnold Allenic, Zhigang Ban, Benyamin Buller, Markus Gloeckler, Benjamin Milliron, Xilin Peng, Rick C. Powell, Jigish Trivedi, Oomman K. Varghese, Jianjun Wang, Zhibo Zhao
  • Publication number: 20170054052
    Abstract: A method for producing, apparatus for producing and photovoltaic device including semiconductor layers with halide heat treated surfaces that increase grain growth within at least one of the semiconductor layers and improve the interface between the semiconductor layers. The halide heat treatment includes applying and heating multiple coatings of a halide compound on surfaces adjacent to or part of the semiconductor layers.
    Type: Application
    Filed: November 3, 2016
    Publication date: February 23, 2017
    Inventors: Markus Gloeckler, Akhlesh Gupta, Xilin Peng, Rick C. Powell, Jigish Trivedi, Jianjun Wang, Zhibo Zhao
  • Publication number: 20150171258
    Abstract: A method and system for controlling the amount of a second material incorporated into a first material by controlling the amount of a third material which can interact with the second material.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 18, 2015
    Inventors: Arnold Allenic, John Barden, Feng Liao, Xilin Peng, Rick C. Powell, Kenneth M. Ring, Gang Xiong
  • Patent number: 9058823
    Abstract: A transducer includes magnetic material formed on a substrate that is shaped to include a trailing edge, a leading edge and a pair of opposing sidewalls extending between the trailing edge and the leading edge. A layer of protective material is positioned in contact with each of the pair of sidewalls of the shaped magnetic material. Backfill material surrounds the protective material on each of the pair of sidewalls of the shaped magnetic material.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: June 16, 2015
    Assignee: Seagate Technology LLC
    Inventors: Alexey V. Nazarov, Vladyslav Alexandrovich Vasko, Olle Gunnar Heinonen, Lijuan Zou, Thomas R. Boonstra, Xilin Peng, Kaizhong Gao
  • Patent number: 9006020
    Abstract: A method and system for controlling the amount of a second material incorporated into a first material by controlling the amount of a third material which can interact with the second material.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: April 14, 2015
    Assignee: First Solar, Inc.
    Inventors: Gang Xiong, Rick C. Powell, Xilin Peng, John Barden, Arnold Allenic, Feng Liao, Kenneth M. Ring
  • Publication number: 20150041429
    Abstract: A tool for use in fabricating an electronic component includes a plurality of processing modules and a transfer chamber in communication with each of the plurality of processing modules. The transfer chamber includes a component for transferring a structure to each of the plurality of processing modules. The plurality of processing modules and the transfer chamber are sealed from the surrounding environment and are under a vacuum. The plurality of processing modules includes a first module configured to perform a first process on the structure and a second module configured to perform a second process on the structure. The first process includes performing at least one shaping operation on the structure.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Xilin Peng, Jiaoming Qiu, Yonghua Chen, Michael Christopher Kautzky, Mark Thomas Kief
  • Patent number: 8932667
    Abstract: A method including forming a multilayer structure. The multilayer structure includes a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The multilayer structure also includes an intermediate layer comprising the first component and a second component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The second component is different than the first component. The multilayer structure further includes a cap layer comprising the first component. The method further includes heating the multilayer structure to an annealing temperature to cause a phase transformation of the intermediate layer. Also a hard magnet including a seed layer comprising a first component selected from the group consisting of a Pt-group metal, Fe, Mn, Ir and Co. The hard magnet also includes a cap layer comprising the first component. The hard magnet further includes an intermediate layer between the seed layer and the cap layer.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: January 13, 2015
    Assignee: Seagate Technology LLC
    Inventors: Jiaoming Qiu, Younghua Chen, Xilin Peng, Shaun McKinlay, Eric W. Singleton, Brian W. Karr
  • Patent number: 8896972
    Abstract: In some examples, a system comprising a data storage member including a magnetic storage medium, the magnetic storage medium having a plurality of magnetic bit domains aligned on at least one data track, where a transition boundary between respective magnetic bit domains defines a transition curvature. The system may further comprise a magnetic read head including a first shield layer, a second shield layer, and a read sensor stack provided proximate to the first and second shield layers, where the magnetic read head senses a magnetic field of each of the plurality of magnetic bit domains according to a read playback sensitivity function. In some examples, the shield layers and read sensor stack may be configured to provide a reader playback sensitivity function that substantially corresponds to the shape of the respective magnetic bit domains.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: November 25, 2014
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Xilin Peng, Zhongyan Wang, Yonghua Chen
  • Publication number: 20140261688
    Abstract: A photovoltaic device is disclosed including at least one Cadmium Sulfide Telluride (CdSxTe1-x) layer as are methods of forming such a photovoltaic device.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: FIRST SOLAR, INC
    Inventors: Arnold Allenic, Zhigang Ban, Benyamin Buller, Markus Gloeckler, Benjamin Milliron, Xilin Peng, Rick C. Powell, Jigish Trivedi, Oomman K. Varghese, Jianjun Wang, Zhibo Zhao
  • Publication number: 20130327391
    Abstract: A method for producing apparatus for producing and photovoltaic device including semiconductor layers with halide heat treated surfaces that increase grain growth within at least one of the semiconductor layers and improve the interface between the semiconductor layers. The halide heat treatment includes applying and heating multiple coatings of a halide compound on surfaces adjacent to or part of the semiconductor layers.
    Type: Application
    Filed: May 21, 2013
    Publication date: December 12, 2013
    Applicant: FIRST SOLAR, INC
    Inventors: Markus Gloeckler, Akhlesh Gupta, Xilin Peng, Rick C. Powell, Jigish Trivedi, Jianjun Wang, Zhibo Zhao
  • Patent number: 8513752
    Abstract: A magnetic tunnel junction includes an amorphous ferromagnetic reference layer having a first reference layer side and an opposing second reference layer side. The first reference layer side has a greater concentration of boron than the second reference layer side. A magnesium oxide tunnel barrier layer is disposed on the second side of the amorphous ferromagnetic reference layer. The magnesium oxide tunnel barrier layer has a crystal structure. An amorphous ferromagnetic free layer is disposed on the magnesium oxide tunnel barrier layer.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 20, 2013
    Assignee: Seagate Technology LLC
    Inventors: Xilin Peng, Konstantin Nikolaev, Taras Pokhil, Victor Sapazhnikov, Yonghua Chen
  • Publication number: 20130017317
    Abstract: Method and apparatus for controlling evacuation pressure of a load lock connected to a processing chamber uses prior pressure changes detected in the processing chamber when the load lock communicates with the processing chamber.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 17, 2013
    Inventors: Kenneth M. Ring, Rick C. Powell, William Logan, Feng Liao, Xilin Peng
  • Publication number: 20130001721
    Abstract: A magnetic tunnel junction includes an amorphous ferromagnetic reference layer having a first reference layer side and an opposing second reference layer side. The first reference layer side has a greater concentration of boron than the second reference layer side. A magnesium oxide tunnel barrier layer is disposed on the second side of the amorphous ferromagnetic reference layer. The magnesium oxide tunnel barrier layer has a crystal structure. An amorphous ferromagnetic free layer is disposed on the magnesium oxide tunnel barrier layer.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 3, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Xilin Peng, Konstantin Nikolaev, Taras Pokhil, Victor Sapozhnikov, Yonghua Chen
  • Patent number: 8318030
    Abstract: A method of fabricating a magnetic device is described. A mask removing layer is formed on a layered sensing stack and a hard mask layer is formed on the mask removing layer. A first reactive ion etch is performed with a non-oxygen-based chemistry to define the hard mask layer using an imaged layer formed on the hard mask layer as a mask. A second reactive ion etch is performed with an oxygen-based chemistry to define the mask removing stop layer using the defined hard mask layer as a mask. A third reactive ion etch is performed to define the layered sensing stack using the hard mask layer as a mask. The third reactive ion etch includes an etching chemistry that performs at a lower etching rate on the hard mask layer than on the layered sensing stack.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: November 27, 2012
    Assignee: Seagate Technology LLC
    Inventors: Xilin Peng, Stacey C. Wakeham, Yifan Zhang, Zhongyan Wang, Konstantin R. Nikolaev, Mark Henry Ostrowski, Yonghua Chen, Juren Ding
  • Patent number: 8294228
    Abstract: A magnetic tunnel junction includes an amorphous ferromagnetic reference layer having a first reference layer side and an opposing second reference layer side. The first reference layer side has a greater concentration of boron than the second reference layer side. A magnesium oxide tunnel barrier layer is disposed on the second side of the amorphous ferromagnetic reference layer. The magnesium oxide tunnel barrier layer has a crystal structure. An amorphous ferromagnetic free layer is disposed on the magnesium oxide tunnel barrier layer.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: October 23, 2012
    Assignee: Seagate Technology LLC
    Inventors: Xilin Peng, Konstantin Nikolaev, Taras Pokhil, Victor Sapazhnikov, Yonghua Chen
  • Publication number: 20120217598
    Abstract: A magnetic tunnel junction includes an amorphous ferromagnetic reference layer having a first reference layer side and an opposing second reference layer side. The first reference layer side has a greater concentration of boron than the second reference layer side. A magnesium oxide tunnel barrier layer is disposed on the second side of the amorphous ferromagnetic reference layer. The magnesium oxide tunnel barrier layer has a crystal structure. An amorphous ferromagnetic free layer is disposed on the magnesium oxide tunnel barrier layer.
    Type: Application
    Filed: May 7, 2012
    Publication date: August 30, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Xilin Peng, Konstantin Nikolaev, Taras Pokhil, Victor Sapazhnikov, Yonghua Chen
  • Patent number: 8238062
    Abstract: In some embodiments, a magnetic reader comprises first and second shields extending from an air bearing surface (ABS), a magnetoresistive stack is located between the first and second shields, and a flux guide is separated from the magnetoresistive stack while connecting the first and second shields. The flux guide magnetically couples the distal end of the magnetoresistive stack to the first shield.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: August 7, 2012
    Assignee: Seagate Technology LLC
    Inventors: Yonghua Chen, Jiaoming Qiu, Xilin Peng, Kaizhong Gao
  • Patent number: 8183653
    Abstract: A magnetic tunnel junction includes an amorphous ferromagnetic reference layer having a first reference layer side and an opposing second reference layer side. The first reference layer side has a greater concentration of boron than the second reference layer side. A magnesium oxide tunnel barrier layer is disposed on the second side of the amorphous ferromagnetic reference layer. The magnesium oxide tunnel barrier layer has a crystal structure. An amorphous ferromagnetic free layer is disposed on the magnesium oxide tunnel barrier layer.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: May 22, 2012
    Assignee: Seagate Technology LLC
    Inventors: Xilin Peng, Konstantin Nikolaev, Taras Pokhil, Victor Sapazhnikov, Yonghua Chen
  • Publication number: 20110194213
    Abstract: In some examples, a system comprising a data storage member including a magnetic storage medium, the magnetic storage medium having a plurality of magnetic bit domains aligned on at least one data track, where a transition boundary between respective magnetic bit domains defines a transition curvature. The system may further comprise a magnetic read head including a first shield layer, a second shield layer, and a read sensor stack provided proximate to the first and second shield layers, where the magnetic read head senses a magnetic field of each of the plurality of magnetic bit domains according to a read playback sensitivity function. In some examples, the shield layers and read sensor stack may be configured to provide a reader playback sensitivity function that substantially corresponds to the shape of the respective magnetic bit domains.
    Type: Application
    Filed: February 8, 2010
    Publication date: August 11, 2011
    Applicant: Seagate Technology LLC
    Inventors: Kaizhong Gao, Xilin Peng, Zhongyan Wang, Yonghua Chen
  • Publication number: 20110007422
    Abstract: A transducer includes magnetic material formed on a substrate that is shaped to include a trailing edge, a leading edge and a pair of opposing sidewalls extending between the trailing edge and the leading edge. A layer of protective material is positioned in contact with each of the pair of sidewalls of the shaped magnetic material. Backfill material surrounds the protective material on each of the pair of sidewalls of the shaped magnetic material.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 13, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Alexey V. Nazarov, Vladyslav Alexandrovich Vasko, Olle Gunnar Heinonen, Lijuan Zou, Thomas R. Boonstra, Xilin Peng, Kaizhong Gao