Patents by Inventor Xin Good
Xin Good has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8718751Abstract: A heart monitoring system comprises a ventricular sensing stage sensing excitation or contraction of ventricular myocardium, an activity sensor unit determining a signal reflecting a patient's physical activity, a ventricular impedance or conductance measuring module, said modules comprising a current source unit adapted to provide a sub-threshold excitation current to the myocardium and comprising an impedance or conductance measurement unit for measuring the resulting voltage on said electrode at the myocardium, a signal generator module, a filter module, a memory, a control unit adapted to derive single measures |?Z| of magnitude of impedance or conductance change over a preset sample time interval, determine the variability TARVI in the impedance or conductance change, compare this variability and the activity sensor output signal with a threshold and recent history, determine if sleep disturbed breathing (SDB) is present, and log the SDB episode in the memory device.Type: GrantFiled: May 9, 2007Date of Patent: May 6, 2014Assignee: BIOTRONIK CRM Patent AGInventors: David F. Hastings, Xin Good, Hannes Kraetschmer, Dirk Muessig
-
Patent number: 8649864Abstract: An implantable medical device that continuously measures the patient's intracardiac ventricular impedance. Extracts cardiac performance information based on the intracardiac impedance, including amplitude, timing and variability of cardiac contraction function. The device records and analysis trends in the performance information. The device identifies changes, which exceed the selected threshold limits. In the event of an incipient crisis, the device transmits an alert message.Type: GrantFiled: October 16, 2007Date of Patent: February 11, 2014Assignee: Biotronik CRM Patent AGInventors: David F. Hastings, Xin Good, Volker Lang
-
Patent number: 8064998Abstract: Heart stimulating system for stimulating at least a ventricle of a heart including: stimulation pulse generator adapted to generate stimulation pulses and connected to a ventricular stimulation electrode for delivering stimulation pulses, atrial sensing stage connected to an electrode for picking up potentials inside an atrium and adapted to sense an excitation or contraction of atrial myocardium, ventricular sensing stage connected to an electrode for picking up potentials inside a ventricle and adapted to sense an excitation or contraction of ventricular myocardium, memory for AV-delay values, a control unit adapted to trigger said stimulation pulse generator to generate ventricular stimulation pulses timed based on AV-delay values stored in said memory and to acquire atrioventricular interval samples, and atrioventricular interval timing analyzing unit for receiving atrioventricular interval samples from said control unit and adapted to generate at least one histogram based on said atrioventricular intervaType: GrantFiled: September 28, 2007Date of Patent: November 22, 2011Assignee: Biotronik CRM Patent AGInventors: Xin Good, David F. Hastings, Hannes Kraetschmer, Dirk Muessig
-
Patent number: 7697986Abstract: Cardiac pacemaker, having at least one stimulation pulse generator to selectively generate stimulation pulses for delivery to an atrium or to an atrium and a ventricle of a heart in DDD mode, at least one sensing stage adapted to process electrical signals sensed by an atrial and ventricular sensing electrode to detect an atrial or ventricular event and to generate an atrial or ventricular sense signal upon event detection, a control unit connected to the generator and sensing stage and being adapted to trigger the generator in DDD mode, wherein the control unit is adapted to verify proper atrioventricular conduction and to switch from a regular (DDD) mode, wherein scheduled ventricular stimulation pulses having predetermined positive intensity is triggered unless inhibited to a ventricular pulse suppression mode (VPS mode) wherein no ventricular stimulation pulses or ventricular stimulation pulses of sub-threshold intensity are generated as long as proper atrioventricular conduction is verified.Type: GrantFiled: July 10, 2006Date of Patent: April 13, 2010Assignee: Biotronik CRM Patent AGInventors: Hannes Kraetschmer, Xin Good
-
Publication number: 20090099617Abstract: An implantable medical device that continuously measures the patient's intracardiac ventricular impedance. Extracts cardiac performance information based on the intracardiac impedance, including amplitude, timing and variability of cardiac contraction function. The device records and analyses trends in the performance information. The device identifies changes, which exceed the selected threshold limits. In the event of an incipient crisis, the device transmits an alert message.Type: ApplicationFiled: October 16, 2007Publication date: April 16, 2009Inventors: David F. Hastings, Xin Good, Volker Lang
-
Publication number: 20090088814Abstract: Heart stimulating system for stimulating at least a ventricle of a heart including: stimulation pulse generator adapted to generate stimulation pulses and connected to a ventricular stimulation electrode for delivering stimulation pulses, atrial sensing stage connected to an electrode for picking up potentials inside an atrium and adapted to sense an excitation or contraction of atrial myocardium, ventricular sensing stage connected to an electrode for picking up potentials inside a ventricle and adapted to sense an excitation or contraction of ventricular myocardium, memory for AV-delay values, a control unit adapted to trigger said stimulation pulse generator to generate ventricular stimulation pulses timed based on AV-delay values stored in said memory and to acquire atrioventricular interval samples, and atrioventricular interval timing analyzing unit for receiving atrioventricular interval samples from said control unit and adapted to generate at least one histogram based on said atrioventricular intervaType: ApplicationFiled: September 28, 2007Publication date: April 2, 2009Inventors: Xin Good, David F. Hastings, Hannes Kraetschmer, Dirk Muessig
-
Publication number: 20080009910Abstract: Cardiac pacemaker, having at least one stimulation pulse generator to selectively generate stimulation pulses for delivery to an atrium or to an atrium and a ventricle of a heart in DDD mode, at least one sensing stage adapted to process electrical signals sensed by an atrial and ventricular sensing electrode to detect an atrial or ventricular event and to generate an atrial or ventricular sense signal upon event detection, a control unit connected to the generator and sensing stage and being adapted to trigger the generator in DDD mode, wherein the control unit is adapted to verify proper atrioventricular conduction and to switch from a regular (DDD) mode, wherein scheduled ventricular stimulation pulses having predetermined positive intensity is triggered unless inhibited to a ventricular pulse suppression mode (VPS mode) wherein no ventricular stimulation pulses or ventricular stimulation pulses of sub-threshold intensity are generated as long as proper atrioventricular conduction is verified.Type: ApplicationFiled: July 10, 2006Publication date: January 10, 2008Inventors: Hannes Kraetschmer, Xin Good
-
Publication number: 20070265539Abstract: A heart monitoring system comprises a ventricular sensing stage sensing excitation or contraction of ventricular myocardium, an activity sensor unit determining a signal reflecting a patient's physical activity, a ventricular impedance or conductance measuring module, said modules comprising a current source unit adapted to provide a sub-threshold excitation current to the myocardium and comprising an impedance or conductance measurement unit for measuring the resulting voltage on said electrode at the myocardium, a signal generator module, a filter module, a memory, a control unit adapted to derive single measures |?Z| of magnitude of impedance or conductance change over a preset sample time interval, determine the variability TARVI in the impedance or conductance change, compare this variability and the activity sensor output signal with a threshold and recent history, determine if sleep disturbed breathing (SDB) is present, and log the SDB episode in the memory device.Type: ApplicationFiled: May 9, 2007Publication date: November 15, 2007Inventors: David F. Hastings, Xin Good, Hannes Kraetschmer, Dirk Muessig