Patents by Inventor Xin Kang

Xin Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7041409
    Abstract: An ionomer and a process for forming the ionomer such that the ionomer has (1) low equivalent weight; below 950, preferably between 625 and 850, and most preferably between about 700 and about 800; and (2) high conductivity, (greater than 0.15 S/cm). In an alternative embodiment, the ionomer has (1) low equivalent weight; below 950, preferably between 625 and 850, and most preferably between about 700 and about 800; and (2) acceptably low hydration, (less than about 75 weight percent). These ionomers are adapted to be processed into thin films that have acceptable physical stability. They are thus extremely well-suited for low humidity or high temperature fuel cell applications.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: May 9, 2006
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Huey Shen Wu, Charles W. Martin, Xin Kang Chen
  • Patent number: 7022428
    Abstract: An ionomer and a process for forming the ionomer such that the ionomer has (1) low equivalent weight; below 950, preferably between 625 and 850, and most preferably between about 700 and about 800; and (2) high conductivity, (greater than 0.15 S/cm). In an alternative embodiment, the ionomer has (1) low equivalent weight; below 950, preferably between 625 and 850, and most preferably between about 700 and about 800; and (2) acceptably low hydration, (less than about 75 weight percent). These ionomers are adapted to be processed into thin films that have acceptable physical stability. They are thus extremely well-suited for low humidity or high temperature fuel cell applications.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: April 4, 2006
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Huey Shen Wu, Charles W. Martin, Xin Kang Chen
  • Patent number: 6861489
    Abstract: An ionomer and a process for forming the ionomer such that the ionomer has (1) low equivalent weight; below 950, preferably between 625 and 850, and most preferably between about 700 and about 800; and (2) high conductivity, (greater than 0.15 S/cm). In an alternative embodiment, the ionomer has (1) low equivalent weight; below 950, preferably between 625 and 850, and most preferably between about 700 and about 800; and (2) acceptably low hydration, (less than about 75 weight percent). These ionomers are adapted to be processed into thin films that have acceptable physical stability. They are thus extremely well-suited for low humidity or high temperature fuel cell applications.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: March 1, 2005
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Huey Shen Wu, Charles W. Martin, Xin Kang Chen
  • Publication number: 20030153700
    Abstract: An ionomer and a process for forming the ionomer such that the ionomer has (1) low equivalent weight; below 950, preferably between 625 and 850, and most preferably between about 700 and about 800; and (2) high conductivity, (greater than 0.15 S/cm). In an alternative embodiment, the ionomer has (1) low equivalent weight; below 950, preferably between 625 and 850, and most preferably between about 700 and about 800; and (2) acceptably low hydration, (less than about 75 weight percent). These ionomers are adapted to be processed into thin films that have acceptable physical stability. They are thus extremely well-suited for low humidity or high temperature fuel cell applications.
    Type: Application
    Filed: December 6, 2001
    Publication date: August 14, 2003
    Inventors: Huey Shen Wu, Charles W. Martin, Xin Kang Chen
  • Publication number: 20030146148
    Abstract: An ionomer and a process for forming the ionomer such that the ionomer has (1) low equivalent weight (below 950, preferably between 625 and 850, and most preferably between 675 and 800) and (2) high conductivity (greater than 0.13 S/cm). In another embodiment, the invention is an ionomer having (1) low equivalent weight (below 950, preferably between 625 and 850, and most preferably between 675 and 800) and (2) acceptably low hydration (less than about 120 weight percent). These ionomers are capable of being processed into thin film and are extremely well-suited for low humidity or high temperature fuel cell applications.
    Type: Application
    Filed: December 6, 2001
    Publication date: August 7, 2003
    Inventors: Huey Shen Wu, Charles W. Martin, Xin Kang Chen
  • Patent number: 6156839
    Abstract: An aqueous microemulsion polymerization procedure is described in which very small colloidal polymer particles are produced from tetrafluoroethylene monomer. The polymerization procedure involves adding a free-radical initiator to a mixture of a microemulsion of at least one liquid saturated organic compound; and tetrafluoroalkyl ethylene.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: December 5, 2000
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Huey Shen Wu, Jack Hegenbarth, Xin Kang Chen, Jian Guo Chen
  • Patent number: 6046271
    Abstract: An aqueous microemulsion polymerization procedure is described in which very small colloidal melt-processible fluoropolymer particles are produced from at least one monomer and optionally TFE. The polymerization procedure involves initiating polymerization by adding a free-radical initiator to a microemulsion of at least one liquid organic compound and at least one free-radical polymerizable monomer to the microemulsion.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: April 4, 2000
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Huey Shen Wu, Jack Hegenbarth, Xin Kang Chen, Jian Guo Chen
  • Patent number: 6037399
    Abstract: An aqueous microemulsion polymerization procedure is described in which very small colloidal melt-processible fluoropolymer particles are produced from at least one gaseous monomer and optionally TFE. The polymerization procedure involves forming a microemulsion of at least one liquid organic compound; adding at least one gaseous free-radical polymerizable monomer to the microemulsion; and initiating polymerization by adding a free-radical initiator to the mixture.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: March 14, 2000
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Huey Shen Wu, Jack Hegenbarth, Chen Xin-Kang, Chen Jian-Guo
  • Patent number: 5895799
    Abstract: An aqueous microemulsion polymerization procedure is described in which very small colloidal polymer particles are produced from tetrafluoroethylene monomer. The polymerization procedure involves adding a free-radical initiator to a mixture of a microemulsion of at least one liquid saturated organic compound; and tetrafluoroalkyl ethylene.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: April 20, 1999
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Huey Shen Wu, Jack Hegenbarth, Xin Kang Chen, Jian Guo Chen
  • Patent number: 5880213
    Abstract: An aqueous microemulsion polymerization procedure is described in which very small colloidal polymer particles are produced from tetrafluoroethylene monomer. The polymerization procedure involves forming a microemulsion of at least one liquid saturated organic compound; adding gaseous tetrafluoroalkyl monomer to the microemulsion; and initiating polymerization by adding a free-radical initiator to the mixture.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: March 9, 1999
    Inventors: Huey Shen Wu, Jack Hegenbarth, Chen Xin-Kang, Chen Jian-Guo