Patents by Inventor Xingquan Liu

Xingquan Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240003252
    Abstract: A continuous mining and delayed filling mining method for a deep ore body masonry structure is provided, comprising: dividing an ore body into ore blocks along a trend, internally dividing each ore block into stopes with square masonry structures, and reserving a rib pillar between the ore blocks; arranging an ore block conveyor belt gallery and a stope conveyor belt gallery at the lower parts of the ore blocks, arranging ore block crossheading and stope crossheading at the upper parts of the ore blocks, mining the stopes in the sequence from the foot wall to the hanging wall. In accordance with the present disclosure, adverse effects caused by deep high geo-stress and high geo-temperature on mining operation can be effectively overcome. The method has the advantages of low carbon and environmental protection, safety of recovery operation, high mechanization of stope operation, low labor intensity of manual operation and the like.
    Type: Application
    Filed: August 29, 2022
    Publication date: January 4, 2024
    Applicant: Shandong Gold Mining Co., Ltd.
    Inventors: Mingde Zhu, Zaitao Liu, Chao Peng, Huanxin Liu, Yingjie Hao, Kuikui Hou, Yantian Yin, Zhihai An, Haoqin Zhang, Guilin Li, Xingquan Liu, Zhen Liu
  • Publication number: 20220393908
    Abstract: A message encapsulation method and apparatus, and a message decapsulation method and apparatus are provided. The message encapsulation method includes encapsulating a first message according to a preset encapsulation format to obtain a second message, where the first message is obtained by encapsulating a traffic stream, the second message carries stream attribute information, and the stream attribute information is used for indicating a feature attribute of the traffic stream.
    Type: Application
    Filed: November 3, 2020
    Publication date: December 8, 2022
    Inventors: Jinghai YU, Quan XIONG, Xingquan LIU, Ruibo HAN
  • Publication number: 20200335651
    Abstract: A solar cell having a cell comprised of gallium arsenide (GaAs) or indium gallium arsenide (InGaAs) with a back surface field (B S F) comprised of aluminum gallium arsenide (AlGaAs) or indium aluminum gallium arsenide (InAlGaAs) p-type doped for enhanced operation of the solar cell at temperatures less than ?50° C. In one example, the back surface field comprises AlxGa1-xAs or In0.01AlxGa1-xAs, wherein x is less than about 0.8, for example, 0.2. The back surface field may be p-type doped with zinc (Zn) or carbon (C).
    Type: Application
    Filed: February 10, 2020
    Publication date: October 22, 2020
    Applicant: The Boeing Company
    Inventors: Philip Chiu, Christopher M. Fetzer, Xingquan Liu
  • Publication number: 20200335652
    Abstract: A panel including at least one solar cell having a cell comprised of gallium arsenide (GaAs) or indium gallium arsenide (InGaAs) with a back surface field (BSF) comprised of aluminum gallium arsenide (AlGaAs) or indium aluminum gallium arsenide (InAlGaAs) p-type doped for enhanced operation of the solar cell at temperatures less than ?50° C. In one example, the back surface field comprises AlxGa1-xAs or In0.01AlxGa1-xAs, wherein x is less than about 0.8, for example, 0.2. The back surface field may be p-type doped with zinc (Zn) or carbon (C).
    Type: Application
    Filed: February 10, 2020
    Publication date: October 22, 2020
    Applicant: The Boeing Company
    Inventors: Philip Chiu, Christopher M. Fetzer, Xingquan Liu
  • Patent number: 10541345
    Abstract: The present disclosure generally relates to a solar cell device that includes a substrate comprising a front side surface and a backside surface; an epitaxial region overlying the substrate, wherein the epitaxial region comprises a first Bragg reflector disposed below a first solar cell, wherein the first solar cell has a first bandgap, wherein the first Bragg reflector is operable to reflect a first range of radiation wavelengths back into the first solar cell, and is operable to cool the solar cell device by reflecting a second range of radiation wavelengths that are outside the photogeneration wavelength range of the first solar cell or that are weakly absorbed by the first solar cell, and may additionally comprise a second Bragg reflector operable to reflect a third range of radiation wavelengths back into the first solar cell.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: January 21, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Richard R. King, Moran Haddad, Philip T. Chiu, Xingquan Liu, Christopher M. Fetzer
  • Patent number: 10446830
    Abstract: The present invention discloses a high-voltage ternary positive electrode material for lithium-ion battery and preparation method thereof. The chemical formula of the material is LiNi0.6-xMgxCo0.2-yAlyMn0.2-zTizO2-dFd, wherein 0<x,y,z,d?0.05. The precursor of the positive electrode material is synthesized by gradient co-precipitation method and the positive electrode material is prepared by solid phase method. The content of nickel in the synthesized precursor particles has a gradient distribution from the inside to the outside. The obtained precursor is mixed and grinded evenly with the lithium source and the fluorine source at a certain ratio and put into the tube furnace. The obtained precursor is then pre-sintered in the oxygen-enriched air atmosphere and then heated up to be sintered, to obtain the target product.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: October 15, 2019
    Assignee: SICHUAN FUHUA NEW ENERGY HIGH-TECH CO., LTD.
    Inventors: Xingquan Liu, Yiding Liu, Zhenhua He
  • Publication number: 20180183045
    Abstract: The present invention discloses a high-voltage ternary positive electrode material for lithium-ion battery and preparation method thereof. The chemical formula of the material is LiNi0.6-xMgxCo0.2-yAlyMn0.2-zTizO2-dFd, wherein 0<x,y,z,d?0.05. The precursor of the positive electrode material is synthesized by gradient co-precipitation method and the positive electrode material is prepared by solid phase method. The content of nickel in the synthesized precursor particles has a gradient distribution from the inside to the outside. The obtained precursor is mixed and grinded evenly with the lithium source and the fluorine source at a certain ratio and put into the tube furnace. The obtained precursor is then pre-sintered in the oxygen-enriched air atmosphere and then heated up to be sintered, to obtain the target product.
    Type: Application
    Filed: September 1, 2017
    Publication date: June 28, 2018
    Applicant: Sichuan FuHua New Energy High-Tech Co., LTD.
    Inventors: Xingquan LIU, Yiding LIU, Zhenhua HE
  • Patent number: 9954128
    Abstract: The present disclosure generally relates to a solar cell device that a first Bragg reflector disposed below a first solar cell and a second Bragg reflector disposed below the first Bragg reflector, wherein the first solar cell comprises a dilute nitride composition and has a first bandgap, wherein the first Bragg reflector is operable to reflect a first range of radiation wavelengths back into the first solar cell and the second Bragg reflector is operable to reflect a third range of wavelengths back into the first solar cell, and the first Bragg reflector and the second Bragg reflector are operable to cool the solar cell device by reflecting a second range of radiation wavelengths that are outside the photogeneration wavelength range of the first solar cell or that are weakly absorbed by the first solar cell.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: April 24, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Richard R. King, Moran Haddad, Philip T. Chiu, Xingquan Liu, Christopher M. Fetzer
  • Publication number: 20170200845
    Abstract: The present disclosure generally relates to a solar cell device that a first Bragg reflector disposed below a first solar cell and a second Bragg reflector disposed below the first Bragg reflector, wherein the first solar cell comprises a dilute nitride composition and has a first bandgap, wherein the first Bragg reflector is operable to reflect a first range of radiation wavelengths back into the first solar cell and the second Bragg reflector is operable to reflect a third range of wavelengths back into the first solar cell, and the first Bragg reflector and the second Bragg reflector are operable to cool the solar cell device by reflecting a second range of radiation wavelengths that are outside the photogeneration wavelength range of the first solar cell or that are weakly absorbed by the first solar cell.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 13, 2017
    Inventors: Richard R. King, Moran Haddad, Philip T. Chiu, Xingquan Liu, Christopher M. Fetzer
  • Publication number: 20170200849
    Abstract: The present disclosure generally relates to a solar cell device that includes a substrate comprising a front side surface and a backside surface; an epitaxial region overlying the substrate, wherein the epitaxial region comprises a first Bragg reflector disposed below a first solar cell, wherein the first solar cell has a first bandgap, wherein the first Bragg reflector is operable to reflect a first range of radiation wavelengths back into the first solar cell, and is operable to cool the solar cell device by reflecting a second range of radiation wavelengths that are outside the photogeneration wavelength range of the first solar cell or that are weakly absorbed by the first solar cell, and may additionally comprise a second Bragg reflector operable to reflect a third range of radiation wavelengths back into the first solar cell.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 13, 2017
    Inventors: Richard R. King, Moran Haddad, Philip T. Chiu, Xingquan Liu, Christopher M. Fetzer
  • Publication number: 20070029541
    Abstract: A highly efficient III-nitride/II-Oxide light emitting device that has a n++-tunneling layer, which comprises at least one material selected from a group consisting of n++-GaN, n++-InGaN, n++-AlGaN, n++-AlGaInN, n++-ZnO, n++-ZnCdO, n++-ZnMgO, n++-ZnMgCdO, that is deposited on top of the p-layer in a LED structure. After that, a top n-layer is deposited above that n++-tunneling layer that may be a n+-layer and comprises at least one material selected from a group consisting of n+-GaN, n+-InGaN, n+-AlGaN, n+-AlGaInN, n+-ZnO, n+-ZnCdO, n+-ZnMgO, n+-ZnMgCdO or a top n-layer may also be a n++-layer and comprises at least one material selected from a group consisting of n++-GaN, n++-InGaN, n++-AlGaN, n++-AlGaInN, n++-ZnO, n++-ZnCdO, n++-ZnMgO, n++-ZnMgCdO so that the top n-layer is made highly conductive and show very rough surface.
    Type: Application
    Filed: August 4, 2005
    Publication date: February 8, 2007
    Inventors: Huoping Xin, Xingquan Liu, Xiaohong Shi, Chan Choi, Jin Song
  • Patent number: 6090741
    Abstract: The present invention relates to a novel catalyst combination and a novel ocess for the synthesis of methanol and methyl formate (MF), and more specifically to the production of methanol and MF by contacting syngas under relatively mild conditions in a slurry phase with the novel catalyst combination comprising unreduced copper chromite prepared using specifical method, alkali alcoholates, a nonionics and a non-polar solvent. The nonionics, for example, C.sub.8 H.sub.17 --(C.sub.6 H.sub.4)--O--(C.sub.2 H.sub.4 O).sub.n H (where n is between 4 and 60) is used in the amount that is at least 5 vol. % of the slurry (liquid reaction medium). And the non-polar solvent having a dielectricity constant between 2 and 3 at 20.degree. C. is used in the amount that is at least 50 vol. % of the slurry. The present invention allows the synthesis of methanol and MF to occur in the temperature range of approximately 100-150.degree. C., and the pressure range of 3-8 MPa.
    Type: Grant
    Filed: September 2, 1998
    Date of Patent: July 18, 2000
    Assignee: Chengdu Institute of Organic Chemisty, Chinese Academy of Sciences
    Inventors: Yutang Wu, Shizhong Luo, Xingquan Liu, Wenkai Chen, Chaoxia Jia, Shunfen Li, Zuolong Yu