Patents by Inventor Xingang Jiao

Xingang Jiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10233510
    Abstract: A system for fluidized bed reduction of powdered iron ore. Use of high-gas-velocity processing accelerates iron ore reduction speed and greatly improves the gas-treatment capabilities of a unit-cross-sectional fluidized bed. Use of parallel connections involving reduced coal gas lessens the volume of gas passing through a single-stage fluidized bed. Use of serial/parallel-connection processing involving reduced coal gas increases the coal gas utilization rate. The invention achieves the highly-effective reduction of powdered iron ore in a fluidized bed under near-atmospheric pressure. A reduction method based on the present system is also disclosed.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: March 19, 2019
    Assignees: INSTITUTE OF PROCESS ENGINEERING, CHINESE ACADEMY OF SCIENCES, BEJING ZHONGKAIHONGDE TECHNOLOGY CO., LTD.
    Inventors: Qingshan Zhu, Chuanlin Fan, Hongzhong Li, Zhaohui Xie, Wenheng Mu, Cunhu Wang, Xingang Jiao
  • Patent number: 10202662
    Abstract: A system and method for fluidized reduction of iron ore powder. Use of oxidation increases the iron ore reduction rate. Use of high-gas-velocity processing accelerates iron ore reduction speed and greatly improves the gas-treatment capabilities of a unit-cross-sectional fluidized bed. Use of parallel-connections involving reduced coal gas lessens the volume of gas passing through a single-stage fluidized bed. The invention achieves the highly-effective reduction of iron ore powder in a fluidized bed under near-atmospheric pressure.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: February 12, 2019
    Assignees: INSTITUTE OF PROCESS ENGINEERING, CHINESE ACADEMY OF SCIENCES, BEIJING ZHONGKAIHONGDE TECHNOLOGY CO., LTD.
    Inventors: Qingshan Zhu, Chuanlin Fan, Hongzhong Li, Zhaohui Xie, Wenheng Mu, Cunhu Wang, Xingang Jiao
  • Patent number: 10100379
    Abstract: A system and method for the fluidized direct reduction of iron ore concentrate powder. A two-phase fluidized bed is used for the direct reduction of iron ore concentrate powder. Each phase of the fluidized bed is formed by a bubbling bed and a circulating bed. Use of serial-connection processing involving gas and of high-gas-velocity processing of the circulating bed increase the gas utilization rate and the reduction efficiency of single-phase reduction. Once reduced gases are subjected to preheating, each gas is sent into an initial reduction phase and a final reduction phase so as to implement reduction of minerals. Use of mixed-connection processing involving gas appropriately reduces processing pressure. Hot flue gas produced by combustion in a gas heater is sent to a mineral pre-heating system that is used for pre-heating iron ore concentrate powder.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: October 16, 2018
    Assignees: INSTITUTE OF PROCESS ENGINEERING, CHINESE ACADEMY OF SCIENCES, BEIJING ZHONGKAIHONGDE TECHNOLOGY CO., LTD.
    Inventors: Qingshan Zhu, Chuanlin Fan, Hongzhong Li, Zhaohui Xie, Wenheng Mu, Cunhu Wang, Xingang Jiao
  • Publication number: 20160369360
    Abstract: A system and method for fluidized reduction of iron ore powder. Use of oxidation increases the iron ore reduction rate. Use of high-gas-velocity processing accelerates iron ore reduction speed and greatly improves the gas-treatment capabilities of a unit-cross-sectional fluidized bed. Use of parallel-connections involving reduced coal gas lessens the volume of gas passing through a single-stage fluidized bed. The invention achieves the highly-effective reduction of iron ore powder in a fluidized bed under near-atmospheric pressure.
    Type: Application
    Filed: December 30, 2014
    Publication date: December 22, 2016
    Inventors: Qingshan Zhu, Chuanlin Fan, Hongzhong LI, Zhaohui Xie, Wenheng Mu, Cunhu Wang, Xingang Jiao
  • Publication number: 20160348198
    Abstract: A system and method for the fluidized direct reduction of iron ore concentrate powder. A two-phase fluidized bed is used for the direct reduction of iron ore concentrate powder. Each phase of the fluidized bed is formed by a bubbling bed and a circulating bed. Use of serial-connection processing involving gas and of high-gas-velocity processing of the circulating bed increase the gas utilization rate and the reduction efficiency of single-phase reduction. Once reduced gases are subjected to preheating, each gas is sent into an initial reduction phase and a final reduction phase so as to implement reduction of minerals. Use of mixed-connection processing involving gas appropriately reduces processing pressure. Hot flue gas produced by combustion in a gas heater is sent to a mineral pre-heating system that is used for pre-heating iron ore concentrate powder.
    Type: Application
    Filed: December 30, 2014
    Publication date: December 1, 2016
    Inventors: Qingshan Zhu, Chuanlin Fan, Hongzhong Li, Zhaohui Xie, Wenheng Mu, Cunhu Wang, Xingang Jiao
  • Publication number: 20160348197
    Abstract: A system for fluidized bed reduction of powdered iron ore. Use of high-gas-velocity processing accelerates iron ore reduction speed and greatly improves the gas-treatment capabilities of a unit-cross-sectional fluidized bed. Use of parallel connections involving reduced coal gas lessens the volume of gas passing through a single-stage fluidized bed. Use of serial/parallel-connection processing involving reduced coal gas increases the coal gas utilization rate. The invention achieves the highly-effective reduction of powdered iron ore in a fluidized bed under near-atmospheric pressure. A reduction method based on the present system is also disclosed.
    Type: Application
    Filed: December 30, 2014
    Publication date: December 1, 2016
    Inventors: Qingshan Zhu, Chuanlin Fan, Hongzhong Li, Zhaohui z Xie, Wenheng Mu, Cunhu Wang, Xingang Jiao