Patents by Inventor Xingbo Liu

Xingbo Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230211415
    Abstract: A method for producing an additively manufactured, graded composite transition joint (AM-GCTJ) includes preparing a grating or lattice pattern from a first alloy A; the grating or lattice pattern includes pores in the grating or lattice patterns. The grating pattern is built from a first end to a second end being denser on the first end than on second end, and gradually reduces density by increasing the pore size and/or reducing density of the grating or lattice pattern; adding a second alloy B powder to the second end of grating or lattice pattern. The second alloy B powder is filled towards the first end. A composite is formed of first alloy A and second alloy B powder in the AM-GCTJ. The composite is subjected to hot isotropic pressing (HIP) to densify the composite. The second alloy B is graduated from the first end to the second end O of AM-GCTJ.
    Type: Application
    Filed: June 4, 2021
    Publication date: July 6, 2023
    Inventors: Xingbo LIU, Zhili FENG, Yanli WANG, David NOVOTNAK, Haiyang QIAN
  • Publication number: 20230134531
    Abstract: A method and system for rapid retrieval of target images based on artificial intelligence, obtaining a template image and a plurality of known labels corresponding to the template image; extracting an image to be detected from a target image database; inputting both the image to be detected and the template image into a trained convolutional neural network, and outputting a hash code of the image to be detected and a hash code of the template image; obtaining a similarity between the images based on a Hamming distance between the hash codes, then selecting one or more images to be detected with the similarity higher than a set threshold as a retrieval result to output. Accordingly, the method and system is able to better cope with the retrieval of items in complex scenarios.
    Type: Application
    Filed: October 18, 2022
    Publication date: May 4, 2023
    Applicant: SHANDONG JIANZHU UNIVERSITY
    Inventors: Xiushan NIE, Yang SHI, Xinfeng LIU, Xingbo LIU, Xiaoming XI, Yilong YIN
  • Publication number: 20230138302
    Abstract: A multiple scenario-oriented item retrieval method and system. The method includes the steps of extracting, by Hashing learning, image features from an image training set to train a pre-built item retrieval model; when an image is in a scenario of hard samples, introducing an adaptive similarity matrix, optimizing the similarity matrix by an image transfer matrix, constructing an adaptive similarity matrix objective function in combination with an image category label; constructing a loss quantization objective function between the image and a Hash code according to the image transfer matrix; when the image is in a scenario of zero samples, introducing an asymmetric similarity matrix, constructing an objective function by taking the image category label as supervisory information in combination with equilibrium and decorrelation constraints of the Hash code; and training the item retrieval model based on the above objective function to obtain a retrieved result of a target item image.
    Type: Application
    Filed: August 5, 2022
    Publication date: May 4, 2023
    Applicant: Shandong Jianzhu University
    Inventors: Xiushan NIE, Yang SHI, Jie GUO, Xingbo LIU, Yilong YIN
  • Publication number: 20220414144
    Abstract: The present disclosure provides a multi-task deep Hash learning-based retrieval method for massive logistics product images. According to the idea of multi-tasking, Hash codes of a plurality of lengths can be learned simultaneously as high-level image representation. Compared with single-tasking in the prior art, the method overcomes shortcomings such as waste of hardware resources and high time cost caused by model retraining under single-tasking. Compared with the traditional idea of learning a single Hash code as an image representation and using it for retrieval, information association among Hash codes of a plurality of lengths is mined, and the mutual information loss is designed to improve the representational capacity of the Hash codes, which addresses the poor representational capacity of a single Hash code, and thus improves the retrieval performance of Hash codes.
    Type: Application
    Filed: June 29, 2022
    Publication date: December 29, 2022
    Inventors: Xiushan NIE, Letian WANG, Xingbo LIU, Shaohua WANG
  • Patent number: 11428623
    Abstract: A high temperature corrosion sensor is provided having (i) a housing having an external wall and an internal wall, the internal wall of the housing forming a chamber of the housing, (ii) a stainless steel tube inserted into the chamber, (iii) a ceramic tube wherein at least a portion of the ceramic tube is inserted into the stainless steel tube, (iv) an airflow tube that extends through the chamber, and (v) a sensor probe having a first working electrode, a second working electrode, a reference electrode, a positive electrical resistance, a negative electrical resistance, and a thermocouple, wherein at least a portion of each are encapsulated into a ceramic casting that is located at one end of the housing. Methods of measuring corrosion within a power plant environment are provided.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: August 30, 2022
    Inventors: Xingbo Liu, Tianliang Zhao, Greg Collins
  • Publication number: 20220196239
    Abstract: A high temperature carbon monoxide sensor for in-situ combustion monitoring is provided having a yttrium-stabilized zirconia interface based emf-measuring electrochemical sensor and a nickel oxide (NiO) first sensing electrode for targeting carbon monoxide gas at a temperature range from between about 1000 degrees Centigrade to about 1200 degrees Centigrade. A method of measuring carbon monoxide using this sensor is provided.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 23, 2022
    Inventors: Xingbo Liu, Yi Wang, Liang Ma, Wenyuan Li
  • Publication number: 20210190674
    Abstract: A high temperature corrosion sensor is provided having (i) a housing having an external wall and an internal wall, the internal wall of the housing forming a chamber of the housing, (ii) a stainless steel tube inserted into the chamber, (iii) a ceramic tube wherein at least a portion of the ceramic tube is inserted into the stainless steel tube, (iv) an airflow tube that extends through the chamber, and (v) a sensor probe having a first working electrode, a second working electrode, a reference electrode, a positive electrical resistance, a negative electrical resistance, and a thermocouple, wherein at least a portion of each are encapsulated into a ceramic casting that is located at one end of the housing. Methods of measuring corrosion within a power plant environment are provided.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Inventors: Xingbo Liu, Tianliang Zhao, Greg Collins
  • Patent number: 10998575
    Abstract: An inorganic solid electrolyte glass phase composite is provided comprising a substance of the general formula La2/3-xLi3xTiO3 wherein x ranges from about 0.04 to about 0.17, and a glass material. The glass material is one or more compounds selected from Li2O, Li2S, Li2SO4, Li3PO4, P2O5, P2O3, Al2O3, SiO2, CaO, MgO, BaO, TiO2, GeO2, SiS2, Sb2O3, SnS, TaS2, P2S5, B2S3, and a combination of two or more thereof. A lithium-ion conducting solid electrolyte composite is disclosed comprising a lithium-ion conductive substance of the general formula La2/3-xLi3xTiO3—Z wherein x ranges form about 0.04 to 0.17, and wherein “Z” is the glass material identified above. A battery is disclosed having at least one cathode and anode and an inorganic solid electrolyte glass phase composite as described above disposed on or between at least one of the cathode and the anode.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: May 4, 2021
    Assignee: West Virginia University
    Inventors: Hui Zhang, Xingbo Liu, Yinglu Jiang
  • Patent number: 10513794
    Abstract: A multilayered cathode for a lithium sulfur battery comprising at least one current collector working electrode having a surface comprising a carbon containing layer, two or more sulfur containing layers wherein at least one of the sulfur layers is located in juxtaposition to and in communication with the carbon containing layer, and at least one outermost layer comprising a positively charged polymer for forming interconnected layers of the sulfur containing layer, the carbon containing layer, and the polymer. Preferably, the cathode has layers that are alternatively arranged of two or more different sulfur containing layers. A lithium sulfur battery is provided and a method of making a multilayered cathode for a lithium sulfur battery is disclosed.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: December 24, 2019
    Assignee: West Virginia University
    Inventors: Jianhua Yan, Bingyun Li, Xingbo Liu
  • Publication number: 20170018765
    Abstract: The present invention provides a composite anode for a battery comprising a copper current collector working electrode, at least one anode material comprising at least one of a carbon, a silicon, a conductive agent, and combinations thereof, wherein at least one anode material is deposited on a surface of the copper current collector working electrode to form the composite anode for a battery. An electrophoretic method for making this anode is provided. A lithium-ion battery having the composite anode is disclosed.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 19, 2017
    Inventors: Hui Zhang, Meng Yao, Xingbo Liu
  • Patent number: 9484573
    Abstract: The present invention provides a composite anode for a battery comprising a copper current collector working electrode, at least one anode material comprising at least one of a carbon, a silicon, a conductive agent, and combinations thereof, wherein at least one anode material is deposited on a surface of the copper current collector working electrode to form the composite anode for a battery. An electrophoretic method for making this anode is provided. A lithium-ion battery having the composite anode is disclosed.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: November 1, 2016
    Assignee: West Virginia University
    Inventors: Hui Zhang, Meng Yao, Xingbo Liu
  • Publication number: 20160172667
    Abstract: A multilayered cathode for a lithium sulfur battery comprising at least one current collector working electrode having a surface comprising a carbon containing layer, two or more sulfur containing layers wherein at least one of the sulfur layers is located in juxtaposition to and in communication with the carbon containing layer, and at least one outermost layer comprising a positively charged polymer for forming interconnected layers of the sulfur containing layer, the carbon containing layer, and the polymer. Preferably, the cathode has layers that are alternatively arranged of two or more different sulfur containing layers. A lithium sulfur battery is provided and a method of making a multilayered cathode for a lithium sulfur battery is disclosed.
    Type: Application
    Filed: December 7, 2015
    Publication date: June 16, 2016
    Inventors: Jianhua Yan, Bingyun Li, Xingbo Liu
  • Publication number: 20150364787
    Abstract: A solid electrolyte composite is provided comprising a NaSICON framework of the formula NaxAyBzP3?zOw wherein A is one or more metal ions, B is one or more ions having a pentavalence, and x is a number ranging from 1 to 12, y is a number ranging from 1 to 2, z is a number ranging from 0 to 3, and w is a number ranging from 4 to 12, wherein B is present or absent, and a glass material. A battery is disclosed having at least one cathode and anode and the solid electrolyte glass phase composite described above disposed between at least one of the anode and cathode. A method for making the solid electrolyte composite is set forth.
    Type: Application
    Filed: December 4, 2012
    Publication date: December 17, 2015
    Inventors: Hui Zhang, Xingbo Liu
  • Publication number: 20150132662
    Abstract: An inorganic solid electrolyte glass phase composite is provided comprising a substance of the general formula La2/3-xLi3xTiO3 wherein x ranges from about 0.04 to about 0.17, and a glass material. The glass material is one or more compounds selected from Li2O, Li2S, Li2SO4, Li3PO4, P2O5, P2O3, Al2O3, SiO2, CaO, MgO, BaO, TiO2, GeO2, SiS2, Sb2O3, SnS, TaS2, P2S5, B253, and a combination of two or more thereof. A lithium-ion conducting solid electrolyte composite is disclosed comprising a lithium-ion conductive substance of the general formula La2/3-xLi3xTiO3—Z wherein x ranges form about 0.04 to 0.17, and wherein “Z” is the glass material identified above. A battery is disclosed having at least one cathode and anode and an inorganic solid electrolyte glass phase composite as described above disposed on or between at least one of the cathode and the anode.
    Type: Application
    Filed: September 17, 2014
    Publication date: May 14, 2015
    Inventors: Hui Zhang, Xingbo Liu, Yinglu Jiang
  • Patent number: 8865354
    Abstract: An inorganic solid electrolyte glass phase composite is provided comprising a substance of the general formula La2/3-xLi3xTiO3 wherein x ranges from about 0.04 to about 0.17, and a glass material. The glass material is one or more compounds selected from Li2O, Li2S, Li2SO4, Li3PO4, B2O3, P2O5, P2O3, Al2O3, SiO2, CaO, MgO, BaO, TiO2, GeO2, SiS2, Sb2O3, SnS, TaS2, P2S5, B2S3, and a combination of two or more thereof. A lithium-ion conducting solid electrolyte composite is disclosed comprising a lithium-ion conductive substance of the general formula La2/3-xLi3xTiO3—Z wherein x ranges form about 0.04 to 0.17, and wherein “Z” is the glass material identified above. A battery is disclosed having at least one cathode and anode and an inorganic solid electrolyte glass phase composite as described above disposed on or between at least one of the cathode and the anode.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: October 21, 2014
    Assignee: West Virginia University
    Inventors: Hui Zhang, Yinglu Jiang, Xingbo Liu
  • Publication number: 20140186701
    Abstract: The present invention provides a composite anode for a battery comprising a copper current collector working electrode, at least one anode material comprising at least one of a carbon, a silicon, a conductive agent, and combinations thereof, wherein at least one anode material is deposited on a surface of the copper current collector working electrode to form the composite anode for a battery. An electrophoretic method for making this anode is provided. A lithium-ion battery having the composite anode is disclosed.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 3, 2014
    Applicant: WEST VIRGINIA UNIVERSITY
    Inventors: Hui Zhang, Meng Yao, Xingbo Liu
  • Patent number: 8173007
    Abstract: A system and method for the high temperature in-situ determination of corrosion characteristics of a molten metal on an alloy under study is provided which takes place within an insulated furnace. A graphite crucible provided in the furnace contains an electrolyte formed from a molten salt of a metal halide. A reference electrode formed from the same metal as the electrolyte is immersed in the electrolyte solution in the graphite crucible. A beta-alumina crucible containing a molten metal is also provided within the furnace and preferably within the graphite crucible. A measuring electrode formed from the alloy under study is immersed in the molten metal. Standard electrochemical techniques are used to measure and analyze the electrochemical effects of corrosion of the molten metal on the alloy.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 8, 2012
    Assignee: West Virginia University
    Inventors: Jing Xu, Xingbo Liu, Yinglu Jiang, Frank Goodwin
  • Publication number: 20110318650
    Abstract: An inorganic solid electrolyte glass phase composite is provided comprising a substance of the general formula La2/3-xLi3xTiO3 wherein x ranges from about 0.04 to about 0.17, and a glass material. The glass material is one or more compounds selected from Li2O, Li2S, Li2SO4, Li3PO4, B2O3, P2O5, P2O3, Al2O3, SiO2, CaO, MgO, BaO, TiO2, GeO2, SiS2, Sb2O3, SnS, TaS2, P2S5, B2S3, and a combination of two or more thereof. A lithium-ion conducting solid electrolyte composite is disclosed comprising a lithium-ion conductive substance of the general formula La2/3-xLi3xTiO3—Z wherein x ranges form about 0.04 to 0.17, and wherein “Z” is the glass material identified above. A battery is disclosed having at least one cathode and anode and an inorganic solid electrolyte glass phase composite as described above disposed on or between at least one of the cathode and the anode.
    Type: Application
    Filed: March 29, 2011
    Publication date: December 29, 2011
    Applicant: West Virginia University
    Inventors: Hui Zhang, Yinglu Jiang, Xingbo Liu
  • Publication number: 20090101522
    Abstract: A system and method for the high temperature in-situ determination of corrosion characteristics of a molten metal on an alloy under study is provided which takes place within an insulated furnace. A graphite crucible provided in the furnace contains an electrolyte formed from a molten salt of a metal halide. A reference electrode formed from the same metal as the electrolyte is immersed in the electrolyte solution in the graphite crucible. A beta-alumina crucible containing a molten metal is also provided within the furnace and preferably within the graphite crucible. A measuring electrode formed from the alloy under study is immersed in the molten metal. Standard electrochemical techniques are used to measure and analyze the electrochemical effects of corrosion of the molten metal on the alloy.
    Type: Application
    Filed: May 29, 2008
    Publication date: April 23, 2009
    Inventors: Jing Xu, Xingbo Liu, Yinglu Jiang, Frank Goodwin
  • Publication number: 20080274006
    Abstract: A submerged pot roll and other articles for use in galvanizing baths including a metallurgically bonded superalloy cladding layer on a steel core layer. The cladding layer improves the corrosion resistance and dross buildup of the article and improves service life while reducing costs.
    Type: Application
    Filed: May 1, 2007
    Publication date: November 6, 2008
    Inventors: Mark Bright, Vinod K. Sikka, James W. Hales, Ravi Menon, Ever J. Barbero, Xingbo Liu, Jing Xu