Patents by Inventor Xinghai Ning

Xinghai Ning has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11707526
    Abstract: Compositions and methods are described for a polymer hydrogel created by a cycloaddition reaction between an azide and an alkyne that proceeds rapidly without catalyst to produce the polymer hydrogel in less than ninety seconds. The polymer hydrogel can be used in in vivo applications for the localized delivery of therapeutic agent in aqueous solutions. An example of therapeutic delivery of a protein in a mouse model is demonstrated.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: July 25, 2023
    Assignees: GEORGIA TECH RESEARCH CORPORATION, CHILDREN'S HEALTHCARE OF ATLANTA, INC.
    Inventors: Niren Murthy, Christopher Hermann, David Scott Wilson, Xinghai Ning, Barbara D. Boyan, Zvi Schwartz, Robert Guldberg, Tamim Diab
  • Publication number: 20220370618
    Abstract: Compositions and methods are described for a polymer hydrogel created by a cycloaddition reaction between an azide and an alkyne that proceeds rapidly without catalyst to produce the polymer hydrogel in less than ninety seconds. The polymer hydrogel can be used in in vivo applications for the localized delivery of therapeutic agent in aqueous solutions. An example of therapeutic delivery of a protein in a mouse model is demonstrated.
    Type: Application
    Filed: January 11, 2022
    Publication date: November 24, 2022
    Applicants: Georgia Tech Research Corporation, Children's Healthcare of Atlanta, Inc.
    Inventors: Niren Murthy, Christopher Hermann, David Scott Wilson, Xinghai Ning, Barbara D. Boyan, Zvi Schwartz, Robert Guldberg, Tamim Diab
  • Patent number: 11253597
    Abstract: Compositions and methods are described for a polymer hydrogel created by a cycloaddition reaction between an azide and an alkyne that proceeds rapidly without catalyst to produce the polymer hydrogel in less than ninety seconds. The polymer hydrogel can be used in in vivo applications for the localized delivery of therapeutic agent in aqueous solutions. An example of therapeutic delivery of a protein in a mouse model is demonstrated.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: February 22, 2022
    Assignees: Georgia Tech Research Corporation, Children's Healthcare of Atlanta
    Inventors: Niren Murthy, Christopher Hermann, David Scott Wilson, Xinghai Ning, Barbara D. Boyan, Zvi Schwartz, Robert Guldberg, Tamim Diab
  • Patent number: 10646580
    Abstract: This disclosure relates to conjugates for targeting bacteria and related uses. In certain embodiments, the disclosure relates to methods of transferring a molecule of interest into bacteria comprising mixing bacteria with a non-naturally occurring conjugate under conditions such that the conjugate is transported across the bacterial cell wall. Typically, the conjugate comprises an oligosaccharide and a molecule of interest. In certain embodiments, the molecule of interest may be a tracer or an antibiotic.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: May 12, 2020
    Assignees: Emory University, Georgia Tech Research Corporation, Georgia State University Research Foundation, Inc.
    Inventors: Niren Murthy, Eric Seth Gilbert, Xinghai Ning, Mark Goodman, Bryan Stubblefield
  • Publication number: 20190314506
    Abstract: Compositions and methods are described for a polymer hydrogel created by a cycloaddition reaction between an azide and an alkyne that proceeds rapidly without catalyst to produce the polymer hydrogel in less than ninety seconds. The polymer hydrogel can be used in in vivo applications for the localized delivery of therapeutic agent in aqueous solutions. An example of therapeutic delivery of a protein in a mouse model is demonstrated.
    Type: Application
    Filed: July 3, 2018
    Publication date: October 17, 2019
    Applicants: Georgia Tech Research Corporation, Children's Healthcare of Atlanta, Inc.
    Inventors: Niren Murthy, Christopher Hermann, David Scott Wilson, Xinghai Ning, Barbara D. Boyan, Zvi Schwartz, Robert Guldberg, Tamim Diab
  • Patent number: 10039831
    Abstract: Compositions and methods are described for a polymer hydrogel created by a cycloaddition reaction between an azide and an alkyne that proceeds rapidly without catalyst to produce the polymer hydrogel in less than ninety seconds. The polymer hydrogel can be used in in vivo applications for the localized delivery of therapeutic agent in aqueous solutions. An example of therapeutic delivery of a protein in a mouse model is demonstrated.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: August 7, 2018
    Assignees: Georgia Tech Research Corporation, Children's Healthcare of Atlanta, Inc.
    Inventors: Niren Murthy, Christopher Hermann, David Scott Wilson, Xinghai Ning, Barbara D. Boyan, Zvi Schwartz, Robert Guldberg, Tamim Diab
  • Publication number: 20180125991
    Abstract: This disclosure relates to conjugates for targeting bacteria and related uses. In certain embodiments, the disclosure relates to methods of transferring a molecule of interest into bacteria comprising mixing bacteria with a non-naturally occurring conjugate under conditions such that the conjugate is transported across the bacterial cell wall. Typically, the conjugate comprises an oligosaccharide and a molecule of interest. In certain embodiments, the molecule of interest may be a tracer or an antibiotic.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 10, 2018
    Inventors: Niren Murthy, Eric Seth Gilbert, Xinghai Ning, Mark Goodman, Bryan Stubblefield
  • Patent number: 9932297
    Abstract: 1,3-Dipole-functional compounds (e.g., azide functional compounds) can be reacted with certain alkynes in a cyclization reaction to form heterocyclic compounds. Useful alkynes (e.g., strained, cyclic alkynes) and methods of making such alkynes are also disclosed. The reaction of 1,3-dipole-functional compounds with alkynes can be used for a wide variety of applications including the immobilization of biomolecules on a substrate.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: April 3, 2018
    Assignee: UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.
    Inventors: Geert-Jan Boons, Jun Guo, Xinghai Ning, Margaretha Wolfert
  • Patent number: 9821071
    Abstract: This disclosure relates to conjugates for targeting bacteria and related uses. In certain embodiments, the disclosure relates to methods of transferring a molecule of interest into bacteria comprising mixing bacteria with a non-naturally occurring conjugate under conditions such that the conjugate is transported across the bacterial cell wall. Typically, the conjugate comprises an oligosaccharide and a molecule of interest. In certain embodiments, the molecule of interest may be a tracer or an antibiotic.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: November 21, 2017
    Assignees: Emory University, Georgia Tech Research Corporation, Georgia State University Research Foundation, Inc.
    Inventors: Niren Murthy, Eric Seth Gilbert, Xinghai Ning, Mark Goodman, Bryan Stubblefield
  • Publication number: 20170320815
    Abstract: 1,3-Dipole-functional compounds (e.g., azide functional compounds) can be reacted with certain alkynes in a cyclization reaction to form heterocyclic compounds. Useful alkynes (e.g., strained, cyclic alkynes) and methods of making such alkynes are also disclosed. The reaction of 1,3-dipole-functional compounds with alkynes can be used for a wide variety of applications including the immobilization of biomolecules on a substrate.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Inventors: Geert-Jan Boons, Jun Guo, Xinghai Ning, Margaretha Wolfert
  • Publication number: 20170274087
    Abstract: This disclosure relates saccharide analogs such as thiomaltose-based analogs for targeting bacteria and related uses. In certain embodiments, the disclosure relates to methods of transferring a molecule of interest into bacteria comprising mixing bacteria with a non-naturally occurring conjugate, wherein the conjugate comprises a thiomaltose-based analog and a molecule of interest under conditions such that the conjugate is transported across the bacterial cell wall. In certain embodiments, the molecule of interest can be a tracer or an antibiotic.
    Type: Application
    Filed: September 21, 2015
    Publication date: September 28, 2017
    Inventors: Mark Goodman, Robert W. Taylor, Kiyoko Takemiya, Niren Murthy, Rafi Mohammed, Xinghai Ning
  • Patent number: 9725405
    Abstract: 1,3-Dipole-functional compounds (e.g., azide functional compounds) can be reacted with certain alkynes in a cyclization reaction to form heterocyclic compounds. Useful alkynes (e.g., strained, cyclic alkynes) and methods of making such alkynes are also disclosed. The reaction of 1,3-dipole-functional compounds with alkynes can be used for a wide variety of applications including the immobilization of biomolecules on a substrate.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: August 8, 2017
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: Geert-Jan Boons, Jun Guo, Xinghai Ning, Margaretha Wolfert
  • Publication number: 20160159732
    Abstract: 1,3-Dipole-functional compounds (e.g., azide functional compounds) can be reacted with certain alkynes in a cyclization reaction to form heterocyclic compounds. Useful alkynes (e.g., strained, cyclic alkynes) and methods of making such alkynes are also disclosed. The reaction of 1,3-dipole-functional compounds with alkynes can be used for a wide variety of applications including the immobilization of biomolecules on a substrate.
    Type: Application
    Filed: December 14, 2015
    Publication date: June 9, 2016
    Inventors: Geert-Jan Boons, Jun Guo, Xinghai Ning, Margaretha Wolfert
  • Patent number: 9227943
    Abstract: 1,3-Dipole-functional compounds (e.g., azide functional compounds) can be reacted with certain alkynes in a cyclization reaction to form heterocyclic compounds. Useful alkynes (e.g., strained, cyclic alkynes) and methods of making such alkynes are also disclosed. The reaction of 1,3-dipole-functional compounds with alkynes can be used for a wide variety of applications including the immobilization of biomolecules on a substrate.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: January 5, 2016
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: Geert-Jan Boons, Jun Guo, Xinghai Ning, Margaretha Wolfert
  • Publication number: 20150126706
    Abstract: 1,3-Dipole-functional compounds (e.g., azide functional compounds) can be reacted with certain alkynes in a cyclization reaction to form heterocyclic compounds. Useful alkynes (e.g., strained, cyclic alkynes) and methods of making such alkynes are also disclosed. The reaction of 1,3-dipole-functional compounds with alkynes can be used for a wide variety of applications including the immobilization of biomolecules on a substrate.
    Type: Application
    Filed: January 7, 2015
    Publication date: May 7, 2015
    Inventors: GEERT-JAN BOONS, JUN GUO, XINGHAI NING, MARGARETHA WOLFERT
  • Patent number: 8940859
    Abstract: 1,3-Dipole-functional compounds (e.g., azide functional compounds) can be reacted with certain alkynes in a cyclization reaction to form heterocyclic compounds. Useful alkynes (e.g., strained, cyclic alkynes) and methods of making such alkynes are also disclosed. The reaction of 1,3-dipole-functional compounds with alkynes can be used for a wide variety of applications including the immobilization of biomolecules on a substrate.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: January 27, 2015
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: Geert-Jan Boons, Jun Guo, Xinghai Ning, Margaretha Wolfert
  • Publication number: 20140219917
    Abstract: This disclosure relates to conjugates for targeting bacteria and related uses. In certain embodiments, the disclosure relates to methods of transferring a molecule of interest into bacteria comprising mixing bacteria with a non-naturally occurring conjugate under conditions such that the conjugate is transported across the bacterial cell wall. Typically, the conjugate comprises an oligosaccharide and a molecule of interest. In certain embodiments, the molecule of interest may be a tracer or an antibiotic.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 7, 2014
    Applicants: Emory University, Georgia State Research Foundation, Georgia Tech Research Corporation
    Inventors: Niren MURTHY, Eric Seth Gilbert, Xinghai Ning, Mark Goodman, Bryan Stubblefield
  • Publication number: 20140171367
    Abstract: Compositions and methods are described for a polymer hydrogel created by a cycloaddition reaction between an azide and an alkyne that proceeds rapidly without catalyst to produce the polymer hydrogel in less than ninety seconds. The polymer hydrogel can be used in in vivo applications for the localized delivery of therapeutic agent in aqueous solutions. An example of therapeutic delivery of a protein in a mouse model is demonstrated.
    Type: Application
    Filed: March 19, 2012
    Publication date: June 19, 2014
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Niren Murthy, Christopher Hermann, David Scott Wilson, Xinghai Ning, Barbara D. Boyan, Zvi Schwartz, Robert Guldberg, Tamim Diab
  • Publication number: 20120322974
    Abstract: 1,3-Dipole-functional compounds (e.g., azide functional compounds) can be reacted with certain alkynes in a cyclization reaction to form heterocyclic compounds. Useful alkynes (e.g., strained, cyclic alkynes) and methods of making such alkynes are also disclosed. The reaction of 1,3-dipole-functional compounds with alkynes can be used for a wide variety of applications including the immobilization of biomolecules on a substrate.
    Type: Application
    Filed: March 13, 2012
    Publication date: December 20, 2012
    Applicant: University of Georgia Research Foundation, Inc.
    Inventors: GEERT-JAN BOONS, Jun Guo, Xinghai Ning, Margaretha Wolfert
  • Publication number: 20120172575
    Abstract: 1,3-Dipole-functional compounds (e.g., azide functional compounds) can be reacted with certain alkynes in a cyclization reaction to form heterocyclic compounds. Useful alkynes (e.g., strained, cyclic alkynes) and methods of making such alkynes are also disclosed. The reaction of 1,3-dipole-functional compounds with alkynes can be used for a wide variety of applications including the immobilization of biomolecules on a substrate.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 5, 2012
    Applicant: University of Georgia Research Foundation, Inc.
    Inventors: GEERT-JAN BOONS, Jun Guo, Xinghai Ning, Margaretha Wolfert