Patents by Inventor Xinhua Zhao

Xinhua Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939584
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 2,3-BDO are disclosed. For example, genetically modified methanotrophs that are capable of generating 2,3-BDO at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed.
    Type: Grant
    Filed: July 31, 2021
    Date of Patent: March 26, 2024
    Assignee: PRECIGEN, INC.
    Inventors: Xinhua Zhao, Mark Anton Held, Tina Huynh, Lily Yuin Chao, Na Trinh, Matthias Helmut Schmalisch, Bryan Yeh, James Kealey, Kevin Lee Dietzel
  • Publication number: 20230051667
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as isobutanol are disclosed. For example, genetically modified methanotrophs that are capable of generating isobutanol at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed.
    Type: Application
    Filed: July 11, 2022
    Publication date: February 16, 2023
    Applicant: PRECIGEN, INC.
    Inventors: Jeffrey David ORTH, Louis A. CLARK, Lily Yuin CHAO, Na My TRINH, Christopher Cheyney FARWELL, Xinhua ZHAO, Matthias Helmut SCHMALISCH, Grayson Thomas WAWRZYN, Xuezhi LI, Mark Anton HELD, Kevin Lee DIETZEL, James KEALEY
  • Patent number: 11421235
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into multicarbon products. Methods of making these genetically modified microorganisms and methods of using them. Vectors encoding enzymes for use in converting carbon substrates into multicarbon products.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: August 23, 2022
    Assignee: PRECIGEN, INC.
    Inventors: Jeffrey David Orth, Louis A. Clark, Lily Yuin Chao, Na My Trinh, Christopher Cheyney Farwell, Xinhua Zhao, Matthias Helmut Schmalisch, Grayson Thomas Wawrzyn, Xuezhi Li, Mark Anton Held, Kevin Lee Dietzel, James Kealey
  • Patent number: 11401538
    Abstract: Recombinant DNA techniques are used to produce oleaginous recombinant cells that produce triglyceride oils having desired fatty acid profiles and regiospecific or stereospecific profiles. Genes manipulated include those encoding stearoyl-ACP desaturase, delta 12 fatty acid desaturase, acyl-ACP thioesterase, ketoacyl-ACP synthase, and lysophosphatidic acid acyltransferase. The oil produced can have enhanced oxidative or thermal stability, or can be useful as a frying oil, shortening, roll-in shortening, tempering fat, cocoa butter replacement, as a lubricant, or as a feedstock for various chemical processes. The fatty acid profile can be enriched in midchain profiles or the oil can be enriched in triglycerides of the saturated-unsaturated-saturated type.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: August 2, 2022
    Assignee: Corbion Biotech, Inc.
    Inventors: Scott Franklin, Aravind Somanchi, George Rudenko, Riyaz Bhat, Xinhua Zhao, Risha Bond, Walter Rakitsky, Alejandro Marangoni, Diza Braksmayer
  • Publication number: 20220112506
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 2,3-BDO; 1,4-BDO; isobutyraldehyde; isobutanol; 1-butanol; n-butanol; ethanol; fatty alcohols; and fatty acid methyl ester are disclosed. For example, genetically modified methanotrophs that are capable of generating 2,3-BDO; 1,4-BDO; isobutyraldehyde; isobutanol; 1-butanol; n-butanol; ethanol; fatty alcohols; and fatty acid methyl ester at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed. These microorganisms and methods make use of molecular switches to regulate gene expression.
    Type: Application
    Filed: November 8, 2021
    Publication date: April 14, 2022
    Applicant: PRECIGEN, INC.
    Inventors: Mark Anton HELD, Xinhua ZHAO, Lily Yuin CHAO, Na TRINH, James KEALEY, Kevin Lee DIETZEL
  • Publication number: 20220064677
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 1,4-BDO are disclosed. For example, genetically modified methanotrophs that are capable of generating 1,4-BDO at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 3, 2022
    Applicant: PRECIGEN, INC.
    Inventors: Xinhua ZHAO, Tina HUYNH, Jeffrey ORTH, Lily Yuin CHAO, James KEALEY
  • Publication number: 20220049259
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 2,3-BDO are disclosed. For example, genetically modified methanotrophs that are capable of generating 2,3-BDO at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed.
    Type: Application
    Filed: July 31, 2021
    Publication date: February 17, 2022
    Applicant: PRECIGEN, INC.
    Inventors: Xinhua ZHAO, Mark Anton HELD, Tina HUYNH, Lily Yuin CHAO, Na TRINH, Matthias Helmut SCHMALISCH, Bryan YEH, James KEALEY, Kevin Lee DIETZEL
  • Patent number: 11198877
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 2,3-BDO; 1,4-BDO; isobutyraldehyde; isobutanol; 1-butanol; n-butanol; ethanol; fatty alcohols; and fatty acid methyl ester are disclosed. For example, genetically modified methanotrophs that are capable of generating 2,3-BDO; 1,4-BDO; isobutyraldehyde; isobutanol; 1-butanol; n-butanol; ethanol; fatty alcohols; and fatty acid methyl ester at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed. These microorganisms and methods make use of molecular switches to regulate gene expression.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: December 14, 2021
    Assignee: PRECIGEN, INC.
    Inventors: Mark Anton Held, Xinhua Zhao, Lily Yuin Chao, Na Trinh, James Kealey, Kevin Lee Dietzel
  • Patent number: 11155837
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 1,4-BDO are disclosed. For example, genetically modified methanotrophs that are capable of generating 1,4-BDO at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: October 26, 2021
    Assignee: PRECIGEN, INC.
    Inventors: Xinhua Zhao, Tina Huynh, Jeffrey Orth, Lily Yuin Chao, James Kealey
  • Patent number: 11111496
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 2,3-BDO are disclosed. For example, genetically modified methanotrophs that are capable of generating 2,3-BDO at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: September 7, 2021
    Assignee: PRECIGEN, INC.
    Inventors: Xinhua Zhao, Mark Anton Held, Tina Huynh, Lily Yuin Chao, Na Trinh, Matthias Helmut Schmalisch, Bryan Yeh, James Kealey, Kevin Lee Dietzel
  • Publication number: 20210130858
    Abstract: Recombinant DNA techniques are used to produce oleaginous recombinant cells that produce triglyceride oils having desired fatty acid profiles and regiospecific or stereospecific profiles. Genes manipulated include those encoding stearoyl-ACP desaturase, delta 12 fatty acid desaturase, acyl-ACP thioesterase, ketoacyl-ACP synthase, and lysophosphatidic acid acyltransferase. The oil produced can have enhanced oxidative or thermal stability, or can be useful as a frying oil, shortening, roll-in shortening, tempering fat, cocoa butter replacement, as a lubricant, or as a feedstock for various chemical processes. The fatty acid profile can be enriched in midchain profiles or the oil can be enriched in triglycerides of the saturated-unsaturated-saturated type.
    Type: Application
    Filed: May 5, 2020
    Publication date: May 6, 2021
    Inventors: Scott Franklin, Aravind Somanchi, George Rudenko, Riyaz Bhat, Xinhua Zhao, Risha Bond, Walter Rakitsky, Alejandro Marangoni, Diza Braksmayer
  • Publication number: 20210115452
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as isobutanol are disclosed. For example, genetically modified methanotrophs that are capable of generating isobutanol at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed.
    Type: Application
    Filed: April 27, 2017
    Publication date: April 22, 2021
    Inventors: Jeffrey David ORTH, Louis A. CLARK, Lily Yuin CHAO, Na My TRINH, Christopher Cheyney FARWELL, Xinhua ZHAO, Matthias Helmut SCHMALISCH, Grayson Thomas WAWRZYN, Xuezhi LI, Mark Anton HELD, Kevin Lee DIETZEL, James KEALEY
  • Publication number: 20200392470
    Abstract: Disclosed are microalgal cells having an ablated or downregulated fatty acyl-ACP thioesterase (FATA) gene, wherein the cell is modified to express a heterologous lysophosphatidic acid acyltransferase (LPAAT) comprising an amino acid sequence that has at least 80% identity to an acyltransferase encoded by SEQ ID NO: 90, 89, 92, 93 or 95 and wherein the modified microalgal cell produces an oil with an elevated ratio of saturated-unsaturated-saturated triglycerides over trisaturated triglycerides as compared to a corresponding unmodified cell. Also disclosed are microalgal oils comprising at least 60% stearate-oleate-stearate (SOS) triglycerides, less than 5% trisaturates and wherein the fatty acid profile of the oil comprises at least 50% C18:0. Related methods of producing an oil are also disclosed.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 17, 2020
    Inventors: Jeffrey Leo Moseley, Jason Casolari, Xinhua Zhao, Aren Ewing, Aravind Somanchi, Scott Franklin, David Davis
  • Patent number: 10683522
    Abstract: Recombinant DNA techniques are used to produce oleaginous recombinant cells that produce triglyceride oils having desired fatty acid profiles and regiospecific or stereospecific profiles. Genes manipulated include those encoding stearoyl-ACP desaturase, delta 12 fatty acid desaturase, acyl-ACP thioesterase, ketoacyl-ACP synthase, and lysophosphatidic acid acyltransferase. The oil produced can have enhanced oxidative or thermal stability, or can be useful as a frying oil, shortening, roll-in shortening, tempering fat, cocoa butter replacement, as a lubricant, or as a feedstock for various chemical processes. The fatty acid profile can be enriched in midchain profiles or the oil can be enriched in triglycerides of the saturated-unsaturated-saturated type.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: June 16, 2020
    Assignee: CORBION BIOTECH, INC.
    Inventors: Scott Franklin, Aravind Somanchi, George Rudenko, Riyaz Bhat, Xinhua Zhao, Risha Bond, Walter Rakitsky, Alejandro Marangoni, Diza Braksmayer
  • Publication number: 20200115713
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 2,3-BDO are disclosed. For example, genetically modified methanotrophs that are capable of generating 2,3-BDO at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed.
    Type: Application
    Filed: January 30, 2018
    Publication date: April 16, 2020
    Inventors: Xinhua ZHAO, Mark Anton HELD, Tina HUYNH, Lily Yuin CHAO, Na TRINH, Matthias Helmut SCHAMLISCH, Bryan YEH, James KEALEY, Kevin Lee DIETZEL
  • Publication number: 20200040344
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 2,3-BDO; 1,4-BDO; isobutyraldehyde; isobutanol; 1-butanol; n-butanol; ethanol; fatty alcohols; and fatty acid methyl ester are disclosed. For example, genetically modified methanotrophs that are capable of generating 2,3-BDO; 1,4-BDO; isobutyraldehyde; isobutanol; 1-butanol; n-butanol; ethanol; fatty alcohols; and fatty acid methyl ester at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed. These microorganisms and methods make use of molecular switches to regulate gene expression.
    Type: Application
    Filed: January 30, 2018
    Publication date: February 6, 2020
    Inventors: Mark Anton HELD, Xinhua ZHAO, Lily Yuin CHAO, Na TRINH, James KEALEY, Kein Lee DIETZEL
  • Publication number: 20200040366
    Abstract: Genetically modified microorganisms that have the ability to convert carbon substrates into chemical products such as 1,4-BDO are disclosed. For example, genetically modified methanotrophs that are capable of generating 1,4-BDO at high titers from a methane source are disclosed. Methods of making these genetically modified microorganisms and methods of using them are also disclosed.
    Type: Application
    Filed: March 13, 2018
    Publication date: February 6, 2020
    Inventors: Xinhua ZHAO, Tina HUYNH, Jeffrey ORTH, Lily Yuin CHAO, James KEALEY
  • Publication number: 20200032302
    Abstract: Recombinant DNA techniques are used to produce oleaginous recombinant cells that produce triglyceride oils having desired fatty acid profiles and regiospecific or stereospecific profiles. Genes manipulated include those encoding stearoyl-ACP desaturase, delta 12 fatty acid desaturase, acyl-ACP thioesterase, ketoacyl-ACP synthase, and lysophosphatidic acid acyltransferase. The oil produced can have enhanced oxidative or thermal stability, or can be useful as a frying oil, shortening, roll-in shortening, tempering fat, cocoa butter replacement, as a lubricant, or as a feedstock for various chemical processes. The fatty acid profile can be enriched in midchain profiles or the oil can be enriched in triglycerides of the saturated-unsaturated-saturated type.
    Type: Application
    Filed: April 2, 2019
    Publication date: January 30, 2020
    Inventors: Scott Franklin, Aravind Somanchi, George Rudenko, Riyaz Bhat, Xinhua Zhao, Risha Bond, Walter Rakitsky, Alejandro Marangoni, Diza Braksmayer
  • Patent number: 10344305
    Abstract: Methods and compositions for the production of dielectric fluids from lipids produced by microorganisms are provided, including oil-bearing microorganisms and methods of low cost cultivation of such microorganisms. Microalgal cells containing exogenous genes encoding, for example, a sucrose transporter, a sucrose invertase, a fructokinase, a polysaccharide-degrading enzyme, a lipid pathway modification enzyme, a fatty acyl-ACP thioesterase, a desaturase, a fatty acyl-CoA/aldehyde reductase, and/or an acyl carrier protein are useful in manufacturing dielectric fluids.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 9, 2019
    Assignee: CORBION BIOTECH, INC.
    Inventors: Scott Franklin, Walter Rakitsky, George Rudenko, Xinhua Zhao, Felipe Arana Rodriguez, Wenhua Lu, Janice Wee
  • Publication number: 20190194703
    Abstract: Novel plant acyl-ACP thioesterase genes of the FatB and FatA classes and proteins encoded by these genes are disclosed. The genes are useful for constructing recombinant host cells having altered fatty acid profiles. Expression of the novel and/or mutated FATB and FATA genes is demonstrated in oleaginous microalga host cells. Furthermore, a method for producing an oil elevated in one or more of C12:0, C14:0, C16:0, C18:0 and/or C18:1 fatty acids includes transforming a cell with novel and/or mutated FATB and/or FATA genes, e.g., having an N-terminal deletion. The cells produce triglycerides with altered and useful fatty acid profiles.
    Type: Application
    Filed: November 9, 2018
    Publication date: June 27, 2019
    Inventors: Jason Casolari, George N. Rudenko, Scott Franklin, Xinhua Zhao