Patents by Inventor Xinlin Peng

Xinlin Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12205999
    Abstract: Provided is a metal-oxide thin-film transistor. The metal-oxide thin-film transistor includes a gate, a gate insulation layer, a metal-oxide semiconductor layer, a source electrode, a drain electrode, and a passivation layer that are successively disposed on a base substrate; wherein the source electrode and the drain electrode are both in a laminated structure, wherein the laminated structure of the source electrode or the drain electrode at least includes a bulk metal layer and an electrode protection layer; wherein the electrode protection layer includes a metal or a metal alloy; the electrode protection layer is at least disposed between the metal-oxide semiconductor layer and the bulk metal layer; wherein a metal-oxide layer is disposed between the electrode protection layer and the bulk metal layer.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: January 21, 2025
    Assignees: FUZHOU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Bin Lin, Liangliang Li, Zheng Liu, Bo Hu, Rui Zhang, Xinlin Peng
  • Publication number: 20240390878
    Abstract: Disclosed are a grain boundary and surface-doped rare earth manganese-zirconium composite compound as well as a preparation method and use thereof. A rare earth manganese oxide with a special structure is formed at grain boundary and surface of a rare earth zirconium-based oxide by a grain boundary doping method so as to increase oxygen defects at the grain boundary and the surface, thereby increasing the amount of active oxygen, improving the catalytic activity of the rare earth manganese-zirconium composite compound, inhibiting high-temperature sintering of the rare earth manganese-zirconium composite compound, and improving the NO catalytic oxidation capability. When the rare earth manganese-zirconium composite compound is applied to a catalyst, the consumption of noble metal can be greatly reduced.
    Type: Application
    Filed: August 6, 2024
    Publication date: November 28, 2024
    Applicants: GRIREM HI-TECH CO., LTD., GRIREM ADVANCED MATERIALS CO., LTD., Rare Earth Functional Materials (Xiong 'an) Innovation Center Co., Ltd.
    Inventors: Yongqi ZHANG, Xiaowei HUANG, Weixin ZHAO, Xinlin PENG, Zheng ZHAO, Yongke HOU, Zhizhe ZHAI, Qiang ZHONG
  • Publication number: 20240194747
    Abstract: Provided is a metal-oxide thin-film transistor. The metal-oxide thin-film transistor includes a gate, a gate insulation layer, a metal-oxide semiconductor layer, a source electrode, a drain electrode, and a passivation layer that are successively disposed on a base substrate; wherein the source electrode and the drain electrode are both in a laminated structure, wherein the laminated structure of the source electrode or the drain electrode at least includes a bulk metal layer and an electrode protection layer; wherein the electrode protection layer includes a metal or a metal alloy; the electrode protection layer is at least disposed between the metal-oxide semiconductor layer and the bulk metal layer; wherein a metal-oxide layer is disposed between the electrode protection layer and the bulk metal layer.
    Type: Application
    Filed: August 31, 2021
    Publication date: June 13, 2024
    Inventors: Bin Lin, Liangliang Li, Zheng Liu, Bo Hu, Rui Zhang, Xinlin Peng
  • Patent number: 8808660
    Abstract: The present invention relates to a method of precipitation of metal ions. Mineral(s), oxide(s), hydroxide(s) of magnesium and/or calcium are adopted as raw materials, and the raw material(s) is processed through at least one step of calcination, slaking, or carbonization to produce aqueous solution(s) of magnesium bicarbonate and/or calcium bicarbonate, and then the solution(s) is used as precipitant(s) to deposit rare earth, such as nickel, cobalt, iron, aluminum, gallium, indium, manganese, cadmium, zirconium, hafnium, strontium, barium, copper and zinc ions. And at least one of metal carbonates, hydroxides or basic carbonates is obtained, or furthermore the obtained products are calcined to produce metal oxides. The invention takes the cheap calcium and/or magnesium minerals or their oxides, hydroxides with low purity as raw materials to instead common precipitants such as ammonium bicarbonate and sodium carbonate etc.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: August 19, 2014
    Assignee: Grirem Advanced Materials Co., Ltd.
    Inventors: Xiaowei Huang, Zhiqi Long, Hongwei Li, Dali Cui, Xinlin Peng, Guilin Yang, Yongke Hou, Chunmei Wang, Shunli Zhang
  • Patent number: 8721998
    Abstract: The application of aqueous solution of magnesium bicarbonate and/or calcium bicarbonate in the process of extraction separation and purification of metals is disclosed, wherein the aqueous solution of magnesium bicarbonate and/or calcium bicarbonate is used as an acidity balancing agent, in order to adjust the balancing pH value of the extraction separation process which uses an acidic organic extractant, improve the extraction capacity of organic phase, and increase the concentration of metal ions in the loaded organic phase.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: May 13, 2014
    Assignee: Grirem Advanced Materials Co., Ltd.
    Inventors: Xiaowei Huang, Zhiqi Long, Xinlin Peng, Hongwei Li, Guilin Yang, Dali Cui, Chunmei Wang, Na Zhao, Liangshi Wang, Ying Yu
  • Publication number: 20110280778
    Abstract: The present invention relates to a method of precipitation of metal ions. Mineral(s), oxide(s), hydroxide(s) of magnesium and/or calcium are adopted as raw materials, and the raw material(s) is processed through at least one step of calcination, slaking, or carbonization to produce aqueous solution(s) of magnesium bicarbonate and/or calcium bicarbonate, and then the solution(s) is used as precipitant(s) to deposit rare earth, such as nickel, cobalt, iron, aluminum, gallium, indium, manganese, cadmium, zirconium, hafnium, strontium, barium, copper and zinc ions. And at least one of metal carbonates, hydroxides or basic carbonates is obtained, or furthermore the obtained products are calcined to produce metal oxides. The invention takes the cheap calcium and/or magnesium minerals or their oxides, hydroxides with low purity as raw materials to instead common precipitants such as ammonium bicarbonate and sodium carbonate etc.
    Type: Application
    Filed: February 9, 2010
    Publication date: November 17, 2011
    Inventors: Xiaowei Huang, Zhiqi Long, Hongwei Li, Dali Cui, Xinlin Peng, Guilin Yang, Yongke Hou, Chunmei Wang, Shunli Zhang
  • Publication number: 20110274597
    Abstract: The application of aqueous solution of magnesium bicarbonate and/or calcium bicarbonate in the process of extraction separation and purification of metals is disclosed, wherein the aqueous solution of magnesium bicarbonate and/or calcium bicarbonate is used as an acidity balancing agent, in order to adjust the balancing pH value of the extraction separation process which uses an acidic organic extractant, improve the extraction capacity of organic phase, and increase the concentration of metal ions in the loaded organic phase.
    Type: Application
    Filed: January 14, 2010
    Publication date: November 10, 2011
    Inventors: Xiaowei Huang, Zhiqi Long, Xinlin Peng, Hongwei Li, Guilin Yang, Dali Cui, Chunmei Wang, Na Zhao, Liangshi Wang, Ying Yu
  • Publication number: 20100003176
    Abstract: A process for pretreating organic extractants and its product and application in SX separation of rare earth. The pretreating method is that extractant and rare earth solution are mixed with powder or slurry of alkaline earth metal compound containing magnesium and/or calcium to realize pre-extraction, or the organic extractant are mixed with rare earth carbonate slurry to realize pre-extraction. When rare earth ion in aqueous phase is extracted into organic phase, the exchanged hydrogen ions enter into aqueous phase and dissolve the alkaline earth metal compound or the rare earth carbonate which helps to keep the acidity equilibrium of the system. The obtained organic extractant loaded with rare earth is used for unsaponificated SX separation of rare earth. With this method, there is no need to saponificate organic extractant with liquid ammonia or alkali, and there is no ammonia-nitrogen wastewater produced. So separation cost decrease at a large scale and a lot of the cost to treat the three wastes is cut.
    Type: Application
    Filed: February 2, 2008
    Publication date: January 7, 2010
    Inventors: Xiaowei Huang, Hongwei Li, Zhiqi Long, Xinlin Peng, Dali Cui, Guilin Yang, Xinghua Luo, Na Zhao, Yongqi Zhang