Patents by Inventor Xinling Zhang

Xinling Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9979487
    Abstract: Provided are a method for processing an OS. The method includes: an OS sending node inserts OCh information into an overhead of an OMS of an OS; and/or, the OS sending node inserts the OCh information and optical carrier information into an OCh overhead of the OS, wherein the OCh information includes an identifier of the OCh, an NCF of an effective frequency slot of a media channel and a slot width of the effective frequency slot of the media channel, and a frequency slice granularity, and the optical carrier information includes: the number of optical carriers in the media channel, bit rates of the optical carriers in the media channel, modulation formats of the optical carriers in the media channel, NCFs of the optical carriers in the media channel, slot widths of the optical carriers in the media channel and a multiplexing method for the optical carriers.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: May 22, 2018
    Assignee: ZTE CORPORATION
    Inventors: Xihua Fu, Xinling Zhang
  • Patent number: 9948397
    Abstract: A data mapping method and a data mapping device for an optical transport network are provided. The method includes: mapping packet service data or constant bit rate data to a Super Optical Channel Data Unit (ODUS) and mapping the ODUS to a Super Optical Channel Transport Unit (OTUS); distributing the OTUS to a plurality of electrical lane signals, dividing the plurality of electrical lane signals into one or more groups and mapping the one or more groups of electrical lane signals to corresponding Super Optical Channels (OChSi), wherein rates of the ODUS and the OTUS are both N times of 100 Gb/s, a rate of the OChSi is M times of 100 Gb/s, tributary slot sizes of the ODUS and the OTUS are both 100 Gb/s, where N is a positive integer equal to or greater than 2, i is a positive integer, and M is a positive integer equal to or greater than 1 but less than N.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: April 17, 2018
    Assignee: ZTE CORPORATION
    Inventors: Xihua Fu, Huitao Wang, Xinling Zhang
  • Patent number: 9906323
    Abstract: Provided are a method and device for mapping and demapping of data. The method comprises: an OTUCnAG comprising an ODUCn with a rate of n*100 gigabits per second to which is added an OTU overhead, is divided according to a byte-interleaving scheme into multiple OTUCmTG; the OTUCmTG respectively are each mapped to a corresponding OCh, and data in the OCh is born on continuous frequency slots for transmission, wherein the rate of the OTUCnAG is n*100 gigabits per second, the rate of the OTUCmTG is m*100 gigabits per second, both m and n are positive integers, and m less than or equal to n. The disclosure increases optical fibre spectrum utilization efficiency and system flexibility and compatibility.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: February 27, 2018
    Assignee: ZTE CORPORATION
    Inventors: Xihua Fu, Xinling Zhang
  • Patent number: 9906295
    Abstract: A method, device and system for detecting optical signal are provided. The method includes that: an optical signal receiving node receives, from an optical signal sending node, an optical channel signal and the in-band overhead information of the optical channel signal; the optical signal receiving node carries out a misconnection detection on the optical channel signal according to the in-band overhead information and generates corresponding alarm information after determining that there is a misconnection, wherein an OCh TTI and Optical channel signal normal central frequency are carried in the in-band overhead information. The disclosure addresses the problem of how to effectively detect the misconnection of optical fibers after coherent reception technologies, including flexible grid, inverse multiplexing and optical devices, are introduced into related technologies and improves the optical signal receiving accuracy and the error detection and correction capability of a system.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: February 27, 2018
    Assignee: ZTE CORPORATION
    Inventors: Xihua Fu, Xinling Zhang
  • Patent number: 9847859
    Abstract: Provided are a method and device for mapping, multiplexing, demapping and demultiplexing data are provided. The method includes: mapping an Ethernet service data stream the rate of which is m*100 Gb/s sequentially into m Optical Payload Unit Sub-frames (OPUC) and multiplexing the m OPUC into an Optical Payload Unit Frame (OPUCm) the rate of which is m*100 Gb/s according to the way of byte interleave; and adding an Optical Channel Data Unit (ODU) overhead to the head of the OPUCm to obtain an Optical Channel Data Unit Frame (ODUCm) the rate of which is m*100 Gb/s, wherein the frame structure of the OPUC consists of 4 rows and 3810 columns; the frame structure of the OPUCm consists of 4 rows and 3810*m columns; and the frame structure of the ODUCm consists of 4 rows and 3824*m columns, wherein m is a positive integer. The present disclosure improves the spectrum efficiency of optical fibers and the systematic flexibility and the compatibility.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: December 19, 2017
    Assignee: XI'AN ZHONGXING NEW SOFTWARE CO. LTD.
    Inventors: Xihua Fu, Xinling Zhang
  • Patent number: 9847847
    Abstract: Disclosed are a method and device for managing optical channel overhead, and an optical signal receiving node. The method comprises: optical channel overhead information is structured, wherein the optical channel overhead information comprises at least one of the following: the optical channel nominal central frequency, the optical channel application code, and the optical channel trail trace identifier; and the optical channel overhead information is sent to the optical signal receiving node. The disclosure solves the technical problem in the related art of an inability to negotiate a single, unified optical channel nominal central frequency and application code between the optical transmitter and the optical receiver, i.e. the disclosure enables an optical transmitter and the optical receiver to negotiate such the nominal central frequency and application code, thereby achieving the technical result of an optical signal being correctly sent and received.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: December 19, 2017
    Assignee: XI'AN ZHONGXING NEW SOFTWARE CO. LTD.
    Inventors: Xihua Fu, Xinling Zhang
  • Patent number: 9667375
    Abstract: A channel establishment method and device are provided. The method includes: establishing a media channel between a first node and a second node; establishing a signal channel between a third node and a fourth node after the media channel is established, wherein the signal channel passes a frequency slot matrix of one or more intermediate nodes between the third node and the fourth node and a traffic engineering link between any two nodes; and allocating frequency spectrum to the signal channel from available frequency spectrum of the traffic engineering link, wherein the frequency spectrum includes multiple split frequency spectrums which bear one optical channel and each of which contains a plurality of optical carriers or only contains a single optical carrier. The solution can address the problem as to how to effectively plan and manage frequency spectrum for an introduced flexible grid technology and improve waveband frequency spectrum efficiency.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: May 30, 2017
    Assignee: ZTE CORPORATION
    Inventors: Xihua Fu, Xinling Zhang
  • Patent number: 9571375
    Abstract: Disclosed are a method and a node for detecting subframe misordering, including that: a receiving node receives subframes from a transmitting node, and judges whether a trail trace identifier carried in each subframe received is same with a desired trail trace identifier of a subframe to be received; when the trail trace identifier carried in each subframe received is same with the desired trail trace identifier of the subframe to be received, judges whether a subframe number value carried in each subframe belongs to a range of desired subframe number values of the subframe to be received, and if it has been judged that the subframe number value carried in the received subframe does not belong to the range of desired subframe number values of the subframe to be received, determines that there is subframe misordering.
    Type: Grant
    Filed: February 8, 2014
    Date of Patent: February 14, 2017
    Assignee: ZTE Corporation
    Inventors: Xihua Fu, Xinling Zhang
  • Patent number: 9537601
    Abstract: A method and device for transmitting data are disclosed, the method comprising: mapping the data to an ODUS, and mapping the ODUS into an OTUS, wherein the rate of the ODUS and the OTUS are M*100 Gb/s, M is a positive integer greater than or equal to 2, and the tributary slot size of the ODUS and the OTUS are 100 Gb/s; distributing the OTUS into M groups of electric channel signals, wherein each group of electric channel signals corresponds to N electric layer channels, N is a positive integer; and mapping all the data distributed into the electric channel signals by the OTUS into the same OChS for transmission, wherein the rate of the OChS is M*100 Gb/s, the M groups of electric channel signals are carried by a single frequency sequence or multiple non-continuous frequency sequences, each frequency sequence carries m groups of electric channel signals, 1?m?M, m is an integer. The disclosure improves optical fibber utilization efficiency as well as system flexibility and compatibility.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: January 3, 2017
    Assignee: ZTE CORPORATON
    Inventors: Xihua Fu, Xinling Zhang
  • Patent number: 9537603
    Abstract: A channel establishment method and device are provided. The method includes: establishing a media channel between a first node and a second node; establishing a signal channel between a third node and a fourth node after the media channel is established, the signal channel passes a frequency slot matrix of one or more intermediate nodes between the third node and the fourth node and a traffic engineering link between any two nodes; and allocating frequency spectrum to the signal channel from available frequency spectrum of the traffic engineering link, wherein the frequency spectrum allocated includes multiple split 50 GHz frequency spectrums which bear one optical channel and each of which only includes single optical carrier. The solution addresses the problem of how to effectively plan and manage frequency spectrum for an introduced flexible grid technology, improves waveband spectrum efficiency and achieves the compatibility to 50 GHz transmission technology of existing DWDM systems.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: January 3, 2017
    Assignee: ZTE CORPORATION
    Inventors: Xihua Fu, Xinling Zhang
  • Patent number: 9479283
    Abstract: A channel establishment method and device are provided. The method includes: establishing a media channel between a first node and a second node, wherein the first node is the source node of the media channel, the second node is the destination node of the media channel, and the media channel passes the frequency slot matrix of the one or more intermediate nodes between the first node and the second node and the optical fiber between any two nodes; and allocating frequency spectrum to the media channel from the available frequency spectrum of the optical fiber, wherein the media channel supports at least one single signal frequency slot. The solution can address the problem of how to effectively plan and manage frequency spectrum for an introduced flexible grid technology.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: October 25, 2016
    Assignee: ZTE CORPORATION
    Inventors: Xihua Fu, Xinling Zhang
  • Publication number: 20160156413
    Abstract: Provided are a method for processing an OS. The method includes: an OS sending node inserts OCh information into an overhead of an OMS of an OS; and/or, the OS sending node inserts the OCh information and optical carrier information into an OCh overhead of the OS, wherein the OCh information includes an identifier of the OCh, an NCF of an effective frequency slot of a media channel and a slot width of the effective frequency slot of the media channel, and a frequency slice granularity, and the optical carrier information includes: the number of optical carriers in the media channel, bit rates of the optical carriers in the media channel, modulation formats of the optical carriers in the media channel, NCFs of the optical carriers in the media channel, slot widths of the optical carriers in the media channel and a multiplexing method for the optical carriers.
    Type: Application
    Filed: November 19, 2013
    Publication date: June 2, 2016
    Applicant: ZTE Corporation
    Inventors: Xihua Fu, Xinling Zhang
  • Publication number: 20160006504
    Abstract: A method, device and system for detecting optical signal are provided. The method includes that: an optical signal receiving node receives, from an optical signal sending node, an optical channel signal and the in-band overhead information of the optical channel signal; the optical signal receiving node carries out a misconnection detection on the optical channel signal according to the in-band overhead information and generates corresponding alarm information after determining that there is a misconnection, wherein an OCh TTI and Optical channel signal normal central frequency are carried in the in-band overhead information. The disclosure addresses the problem of how to effectively detect the misconnection of optical fibers after coherent reception technologies, including flexible grid, inverse multiplexing and optical devices, are introduced into related technologies and improves the optical signal receiving accuracy and the error detection and correction capability of a system.
    Type: Application
    Filed: February 13, 2014
    Publication date: January 7, 2016
    Inventors: Xihua FU, Xinling ZHANG
  • Publication number: 20160006534
    Abstract: Disclosed are a method and device for managing optical channel overhead, and an optical signal receiving node. The method comprises: optical channel overhead information is structured, wherein the optical channel overhead information comprises at least one of the following: the optical channel nominal central frequency, the optical channel application code, and the optical channel trail trace identifier; and the optical channel overhead information is sent to the optical signal receiving node. The disclosure solves the technical problem in the related art of an inability to negotiate a single, unified optical channel nominal central frequency and application code between the optical transmitter and the optical receiver, i.e. the disclosure enables an optical transmitter and the optical receiver to negotiate such the nominal central frequency and application code, thereby achieving the technical result of an optical signal being correctly sent and received.
    Type: Application
    Filed: February 7, 2014
    Publication date: January 7, 2016
    Inventors: Xihua FU, Xinling ZHANG
  • Publication number: 20160006636
    Abstract: Disclosed are a method and a node for detecting subframe misordering, including that: a receiving node receives subframes from a transmitting node, and judges whether a trail trace identifier carried in each subframe received is same with a desired trail trace identifier of a subframe to be received; when the trail trace identifier carried in each subframe received is same with the desired trail trace identifier of the subframe to be received, judges whether a subframe number value carried in each subframe belongs to a range of desired subframe number values of the subframe to be received, and if it has been judged that the subframe number value carried in the received subframe does not belong to the range of desired subframe number values of the subframe to be received, determines that there is subframe misordering.
    Type: Application
    Filed: February 8, 2014
    Publication date: January 7, 2016
    Inventors: Xihua Fu, Xinling Zhang
  • Publication number: 20160006545
    Abstract: Provided are a method and device for mapping, multiplexing, demapping and demultiplexing data are provided. The method includes: mapping an Ethernet service data stream the rate of which is m*100 Gb/s sequentially into m Optical Payload Unit Sub-frames (OPUC) and multiplexing the m OPUC into an Optical Payload Unit Frame (OPUCm) the rate of which is m*100 Gb/s according to the way of byte interleave; and adding an Optical Channel Data Unit (ODU) overhead to the head of the OPUCm to obtain an Optical Channel Data Unit Frame (ODUCm) the rate of which is m*100 Gb/s, wherein the frame structure of the OPUC consists of 4 rows and 3810 columns; the frame structure of the OPUCm consists of 4 rows and 3810*m columns; and the frame structure of the ODUCm consists of 4 rows and 3824*m columns, wherein m is a positive integer. The present disclosure improves the spectrum efficiency of optical fibers and the systematic flexibility and the compatibility.
    Type: Application
    Filed: February 13, 2014
    Publication date: January 7, 2016
    Inventors: Xihua FU, Xinling ZHANG
  • Publication number: 20160006535
    Abstract: Provided are a method and device for mapping and demapping of data. The method comprises: an OTUCnAG comprising an ODUCn with a rate of n*100 gigabits per second to which is added an OTU overhead, is divided according to a byte-interleaving scheme into multiple OTUCmTG; the OTUCmTG respectively are each mapped to a corresponding OCh, and data in the OCh is born on continuous frequency slots for transmission, wherein the rate of the OTUCnAG is n*100 gigabits per second, the rate of the OTUCmTG is m*100 gigabits per second, both m and n are positive integers, and m less than or equal to n. The disclosure increases optical fibre spectrum utilization efficiency and system flexibility and compatibility.
    Type: Application
    Filed: February 13, 2014
    Publication date: January 7, 2016
    Inventors: Xihua FU, Xinling ZHANG
  • Publication number: 20150333861
    Abstract: A channel establishment method and device are provided. The method includes: establishing a media channel between a first node and a second node; establishing a signal channel between a third node and a fourth node after the media channel is established, wherein the signal channel passes a frequency slot matrix of one or more intermediate nodes between the third node and the fourth node and a traffic engineering link between any two nodes; and allocating frequency spectrum to the signal channel from available frequency spectrum of the traffic engineering link, wherein the frequency spectrum includes multiple split frequency spectrums which bear one optical channel and each of which contains a plurality of optical carriers or only contains a single optical carrier. The solution can address the problem as to how to effectively plan and manage frequency spectrum for an introduced flexible grid technology and improve waveband frequency spectrum efficiency.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 19, 2015
    Applicant: ZTE Corporation
    Inventors: Xihua Fu, Xinling Zhang
  • Publication number: 20150256258
    Abstract: A data mapping method and a data mapping device for an optical transport network are provided. The method includes: mapping packet service data or constant bit rate data to a Super Optical Channel Data Unit (ODUS) and mapping the ODUS to a Super Optical Channel Transport Unit (OTUS); distributing the OTUS to a plurality of electrical lane signals, dividing the plurality of electrical lane signals into one or more groups and mapping the one or more groups of electrical lane signals to corresponding Super Optical Channels (OChSi), wherein rates of the ODUS and the OTUS are both N times of 100 Gb/s, a rate of the OChSi is M times of 100 Gb/s, tributary slot sizes of the ODUS and the OTUS are both 100 Gb/s, where N is a positive integer equal to or greater than 2, i is a positive integer, and M is a positive integer equal to or greater than 1 but less than N.
    Type: Application
    Filed: August 22, 2013
    Publication date: September 10, 2015
    Inventors: Xihua Fu, Huitao Wang, Xinling Zhang
  • Patent number: 9131288
    Abstract: A G.709 based multiplexing routing control method and gateway network element. The method includes carrying, in a gateway network element, the multi-stages multiplexing capability of the gateway network element in a link state broadcast data packet, and broadcasting, through a routing protocol, the multi-stages multiplexing capability of the gateway network element to the routing area or Path Computation Entity (PCE) in which the gateway network element is located. The gateway network element is configured to carry the multi-stages multiplexing capability of the gateway network element in a link state broadcast data packet, and to broadcast, through a routing protocol, the multi-stages multiplexing capability of the gateway network element to the routing area or PCE in which the gateway network element is located.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 8, 2015
    Assignee: ZTE Corporation
    Inventors: Xihua Fu, Xinling Zhang