Patents by Inventor Xiongxin Dai

Xiongxin Dai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10670738
    Abstract: A portable detection apparatus can include a housing, a first detector for detecting ionizing radiation from a first subject and a second detector within the housing for the detecting the background radiation. A shield within the housing can surround the first and second detectors and define a shield aperture around the first and second detectors for radiation from the subject to enter the housing. A radiation blocking member can substantially block at least a portion of the ionizing radiation from reaching the second detector, whereby radiation detected by the second detector comprises substantially only the background radiation. A processor module can be connected to the first and second detectors for determining the amount of ionizing radiation detected by the first detector attributable to secondary radiation.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: June 2, 2020
    Assignee: Atomic Energy of Canada Limited / Energie Atomique Du Canada Limitee
    Inventors: Xiongxin Dai, Liqian Li, Guy Jonkmans, Aaron Ho
  • Patent number: 10242761
    Abstract: A method for preparing alpha sources of polonium. A sample of polonium is provided in a solution. A controlled amount of sulfide and a controlled amount of a metal capable of forming an insoluble sulfide salt in the solution are introduced into the solution, in order to co-precipitate polonium from the solution. The precipitates are filtered out.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: March 26, 2019
    Assignee: ATOMIC ENERGY OF CANADA LIMITED
    Inventors: Nicolas Guerin, Xiongxin Dai
  • Patent number: 10113110
    Abstract: Described herein is a boron-loaded liquid scintillator composition comprising a scintillation solvent including at least one linear alkylbenzene (LAB), diisopropyl naphthalene (DIN) or phenylxylyl ethane (PXE), or a combination of one or more thereof; at least one boron-containing material; one or more fluors, such as 2,5-diphenyloxazole (PPO), and optionally one or more wavelength shifters, such as 1,4-bis[2-methylstyryl]benzene (bis-MSB). The boron-containing material may comprise a carborane, such as o-carborane, especially those enriched in Boron-10. Methods of preparation of the liquid scintillator composition are also described, as well as concentrates thereof.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 30, 2018
    Assignee: ATOMIC ENERGY OF CANADA LIMITED
    Inventors: Xiongxin Dai, Bhaskar Sur, Ghaouti Bentoumi, Liqian Li, Guy Jonkmans
  • Publication number: 20180275286
    Abstract: A portable detection apparatus can include a housing, a first detector for detecting ionizing radiation from a first subject and a second detector within the housing for the detecting the background radiation. A shield within the housing can surround the first and second detectors and define a shield aperture around the first and second detectors for radiation from the subject to enter the housing. A radiation blocking member can substantially block at least a portion of the ionizing radiation from reaching the second detector, whereby radiation detected by the second detector comprises substantially only the background radiation. A processor module can be connected to the first and second detectors for determining the amount of ionizing radiation detected by the first detector attributable to secondary radiation.
    Type: Application
    Filed: May 8, 2018
    Publication date: September 27, 2018
    Inventors: Xiongxin Dai, Liqian Li, Guy Jonkmans, Aaron Ho
  • Patent number: 9971040
    Abstract: A portable detection apparatus can include a housing, a first detector for detecting ionizing radiation from a first subject and a second detector within the housing for the detecting the background radiation. A shield within the housing can surround the first and second detectors and define a shield aperture around the first and second detectors for radiation from the subject to enter the housing. A radiation blocking member can substantially block at least a portion of the ionizing radiation from reaching the second detector, whereby radiation detected by the second detector comprises substantially only the background radiation. A processor module can be connected to the first and second detectors for determining the amount of ionizing radiation detected by the first detector attributable to secondary radiation.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 15, 2018
    Assignee: Atomic Energy of Canada Limited/ Énergie Atomique du Canada Limitée
    Inventors: Xiongxin Dai, Liqian Li, Guy Jonkmans, Aaron Ho
  • Publication number: 20170146669
    Abstract: A portable detection apparatus can include a housing, a first detector for detecting ionizing radiation from a first subject and a second detector within the housing for the detecting the background radiation. A shield within the housing can surround the first and second detectors and define a shield aperture around the first and second detectors for radiation from the subject to enter the housing. A radiation blocking member can substantially block at least a portion of the ionizing radiation from reaching the second detector, whereby radiation detected by the second detector comprises substantially only the background radiation. A processor module can be connected to the first and second detectors for determining the amount of ionizing radiation detected by the first detector attributable to secondary radiation.
    Type: Application
    Filed: December 22, 2016
    Publication date: May 25, 2017
    Inventors: Xiongxin Dai, Liqian Li, Guy Jonkmans, Aaron Ho
  • Patent number: 9562978
    Abstract: A portable detection apparatus can include a housing, a first detector for detecting ionizing radiation from a first subject and a second detector within the housing for the detecting the background radiation. A shield within the housing can surround the first and second detectors and define a shield aperture around the first and second detectors for radiation from the subject to enter the housing. A radiation blocking member can substantially block at least a portion of the ionizing radiation from reaching the second detector, whereby radiation detected by the second detector comprises substantially only the background radiation. A processor module can be connected to the first and second detectors for determining the amount of ionizing radiation detected by the first detector attributable to secondary radiation.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: February 7, 2017
    Assignee: Atomic Energy of Canada Limited
    Inventors: Xiongxin Dai, Liqian Li, Guy Jonkmans, Aaron Ho
  • Publication number: 20160055928
    Abstract: A method for preparing alpha sources of polonium. A sample of polonium is provided in a solution. A controlled amount of sulfide and a controlled amount of a metal capable of forming an insoluble sulfide salt in the solution are introduced into the solution, in order to co-precipitate polonium from the solution. The precipitates are filtered out.
    Type: Application
    Filed: March 25, 2014
    Publication date: February 25, 2016
    Applicant: ATOMIC ENERGY OF CANADA LIMITED
    Inventors: Nicolas GUERIN, Xiongxin DAI
  • Publication number: 20150014588
    Abstract: Described herein is a boron-loaded liquid scintillator composition comprising a scintillation solvent including at least one linear alkylbenzene (LAB), diisopropyl naphthalene (DIN) or phenylxylyl ethane (PXE), or a combination of one or more thereof; at least one boron-containing material; one or more fluors, such as 2,5-diphenyloxazole (PPO), and optionally one or more wavelength shifters, such as 1,4-bis[2-methylstyryl]benzene (bis-MSB). The boron-containing material may comprise a carborane, such as o-carborane, especially those enriched in Boron-10. Methods of preparation of the liquid scintillator composition are also described, as well as concentrates thereof.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 15, 2015
    Inventors: Xiongxin DAI, Bhaskar SUR, Ghaouti BENTOUMI, Liqian LI, Guy JONKMANS
  • Publication number: 20140291531
    Abstract: A portable detection apparatus can include a housing, a first detector for detecting ionizing radiation from a first subject and a second detector within the housing for the detecting the background radiation. A shield within the housing can surround the first and second detectors and define a shield aperture around the first and second detectors for radiation from the subject to enter the housing. A radiation blocking member can substantially block at least a portion of the ionizing radiation from reaching the second detector, whereby radiation detected by the second detector comprises substantially only the background radiation. A processor module can be connected to the first and second detectors for determining the amount of ionizing radiation detected by the first detector attributable to secondary radiation.
    Type: Application
    Filed: October 26, 2012
    Publication date: October 2, 2014
    Applicant: ATOMIC ENERGY OF CANADA LIMITED/ Énergie Atomique du CANADA Limitée
    Inventors: Xiongxin Dai, Liqian Li, Guy Jonkmans, Aaron Ho