Patents by Inventor Xiongzhe Huang

Xiongzhe Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11268494
    Abstract: A wind turbine is provided. The wind turbine includes a mechanical system, an electrical system and a controller. The controller is for determining an electrical capability limit of the electrical system according at least in part to one or more operating conditions of the wind turbine and one or more environment conditions of a site of the wind turbine, comparing the electrical capability limit of the electrical system and a mechanical capability limit of the mechanical system, and controlling the electrical system to operate at the smaller one of the electrical capability limit and the mechanical capability limit. A method for controlling a wind turbine comprising a mechanical system and an electrical system is also provided.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: March 8, 2022
    Assignee: General Electric Company
    Inventors: Zhuohui Tan, Bo Qu, Xiongzhe Huang, Xu Fu, Shuang Gu, Fernando Javier D'Amato
  • Publication number: 20210285418
    Abstract: A wind turbine is provided. The wind turbine includes a mechanical system, an electrical system and a controller. The controller is for determining an electrical capability limit of the electrical system according at least in part to one or more operating conditions of the wind turbine and one or more environment conditions of a site of the wind turbine, comparing the electrical capability limit of the electrical system and a mechanical capability limit of the mechanical system, and controlling the electrical system to operate at the smaller one of the electrical capability limit and the mechanical capability limit. A method for controlling a wind turbine comprising a mechanical system and an electrical system is also provided.
    Type: Application
    Filed: September 19, 2016
    Publication date: September 16, 2021
    Inventors: Zhuohui TAN, Bo QU, Xiongzhe HUANG, Xu FU, Shuang GU, Fernando Javier D'AMATO
  • Patent number: 11073133
    Abstract: A method for controlling the operation of a wind turbine may generally include monitoring a current yaw position of a nacelle of the wind turbine, wherein the current yaw position is located within one of a plurality of yaw sectors defined for the nacelle. In addition, the method may include monitoring a wind-dependent parameter of the wind turbine and determining a variance of the wind-dependent parameter over time, wherein the variance is indicative of variations in a wind parameter associated with the wind turbine. Moreover, the method may include determining at least one curtailed operating setpoint for the wind turbine when the variance exceeds a predetermined variance threshold, wherein the curtailed operating setpoint(s) is determined based at least in part on historical wind data for the yaw sector associated with the current yaw position.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: July 27, 2021
    Assignee: General Electric Company
    Inventors: Danian Zheng, Shuang Gu, Veronica Hernandez-Ortiz, Xiongzhe Huang, David Forrest Loy, Ramy Michael Souri
  • Patent number: 10107261
    Abstract: A system and method for reducing oscillation loads of a wind turbine induced by high turbulence and/or combined with other environmental conditions are provided. The method includes determining at least one wind parameter at the wind turbine; monitoring an operating condition of the wind turbine; determining, by a processor, a variance of at least one of the monitored operating condition or a plurality of the wind parameters, wherein the variance is indicative of an oscillation occurring at one or more wind turbine components; determining, by a processor, an operating set point based on the variance; and, operating the wind turbine based on the operating set point when the variance indicates that the oscillation has a frequency within a certain frequency band so as to modify the frequency, wherein the modified frequency is outside of the frequency band and reduces oscillation loads occurring at the one or more wind turbine components.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: October 23, 2018
    Assignee: General Electric Company
    Inventors: Danian Zheng, Xiongzhe Huang, William Edwin Holley, Conner B. Shane, Raveendra Penmatsa, Jignesh Govindlal Gandhi, Timothy Botsford Cribbs
  • Patent number: 9976539
    Abstract: A control method and a control system for a wind turbine are disclosed. The control method comprises measuring wind turbine blade pitch angles; obtaining a wind turbine rotor acceleration value; determining whether a blade pitch runaway fault condition is occurring; and during the blade pitch runaway fault condition, adjusting a pitch angle command based at least in part on the rotor acceleration value, a pitch angle of at least one faulted blade and a pitch angle of a healthy blade; and controlling wind turbine blades based at least in part on the adjusted pitch angle command.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: May 22, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Fabiano Daher Adegas, Xiongzhe Huang, Pranav Agarwal
  • Publication number: 20170321654
    Abstract: A method for controlling the operation of a wind turbine may generally include monitoring a current yaw position of a nacelle of the wind turbine, wherein the current yaw position is located within one of a plurality of yaw sectors defined for the nacelle. In addition, the method may include monitoring a wind-dependent parameter of the wind turbine and determining a variance of the wind-dependent parameter over time, wherein the variance is indicative of variations in a wind parameter associated with the wind turbine. Moreover, the method may include determining at least one curtailed operating setpoint for the wind turbine when the variance exceeds a predetermined variance threshold, wherein the curtailed operating setpoint(s) is determined based at least in part on historical wind data for the yaw sector associated with the current yaw position.
    Type: Application
    Filed: October 31, 2014
    Publication date: November 9, 2017
    Inventors: Danian ZHENG, Shuang GU, Veronica HERNANDEZ-ORTIZ, Xiongzhe HUANG, David Forrest LOY, Ramy Michael SOURI
  • Patent number: 9726147
    Abstract: A method for stopping the operation of a wind turbine is disclosed. The method may generally include receiving signals associated with at least one operating condition of the wind turbine, analyzing the at least one operating condition with a controller of the wind turbine, implementing a first stopping procedure in order to stop operation of the wind turbine when analysis of the at least one operating condition indicates that a pitch system failure has occurred and implementing a second stopping procedure in order to stop operation of the wind turbine when analysis of the at least one operating condition indicates that a different wind turbine stop event has occurred.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: August 8, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Xiongzhe Huang, Danian Zheng
  • Patent number: 9638171
    Abstract: A method of operating a wind turbine is provided. The wind turbine includes a rotor that is rotatably coupled to a generator that is positioned within a nacelle. The rotor includes one or more rotor blades that are coupled to a hub. The method includes transmitting, from a first sensor to a control system, at least a first monitoring signal indicative of a first wind condition at a first distance from the wind turbine. A second sensor transmits at least a second monitoring signal that is indicative of a second wind condition at a second distance from the wind turbine that is longer than the first distance to the control system. The control system calculates a wind turbine operating command based at least in part on the first monitoring signal and the second monitoring signal. One or more wind turbine components are operated based on the calculated wind turbine operating command.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: May 2, 2017
    Assignee: General Electric Company
    Inventors: Xiongzhe Huang, Danian Zheng, Wei Xiong
  • Publication number: 20160305403
    Abstract: A system and method for reducing oscillation loads of a wind turbine induced by high turbulence and/or combined with other environmental conditions are provided. The method includes determining at least one wind parameter at the wind turbine; monitoring an operating condition of the wind turbine; determining, by a processor, a variance of at least one of the monitored operating condition or a plurality of the wind parameters, wherein the variance is indicative of an oscillation occurring at one or more wind turbine components; determining, by a processor, an operating set point based on the variance; and, operating the wind turbine based on the operating set point when the variance indicates that the oscililation has a frequency within a certain frequency band so as to modify the frequency, wherein the modified frequency is outside of the frequency band and reduces oscillation loads occurring at the one or more wind turbine components.
    Type: Application
    Filed: December 9, 2013
    Publication date: October 20, 2016
    Inventors: Danian Zheng, Xiongzhe Huang, William Edwin Holley, Conner B. Shane, Raveendra Penmatsa, Jignesh Govindlal Gandhi, Timothy Botsford Cribbs
  • Publication number: 20150361964
    Abstract: A control method and a control system for a wind turbine are disclosed. The control method comprises measuring wind turbine blade pitch angles; obtaining a wind turbine rotor acceleration value; determining whether a blade pitch runaway fault condition is occurring; and during the blade pitch runaway fault condition, adjusting a pitch angle command based at least in part on the rotor acceleration value, a pitch angle of at least one faulted blade and a pitch angle of a healthy blade; and controlling wind turbine blades based at least in part on the adjusted pitch angle command.
    Type: Application
    Filed: June 8, 2015
    Publication date: December 17, 2015
    Inventors: Fabiano DAHER ADEGAS, Xiongzhe HUANG, Pranav AGARWAL
  • Publication number: 20150110596
    Abstract: A method for stopping the operation of a wind turbine is disclosed. The method may generally include receiving signals associated with at least one operating condition of the wind turbine, analyzing the at least one operating condition with a controller of the wind turbine, implementing a first stopping procedure in order to stop operation of the wind turbine when analysis of the at least one operating condition indicates that a pitch system failure has occurred and implementing a second stopping procedure in order to stop operation of the wind turbine when analysis of the at least one operating condition indicates that a different wind turbine stop event has occurred.
    Type: Application
    Filed: May 2, 2012
    Publication date: April 23, 2015
    Applicant: General Electric Company
    Inventors: Xiongzhe Huang, Danian Zheng
  • Publication number: 20140356165
    Abstract: A wind turbine blade has a suction side shell member and a pressure side shell member. The shell members are joined along a leading and trailing edge from a root to a tip of the blade and defining an internal cavity of the blade. A pressure sensor is configured on at least one of the suction or pressure side shell members. The pressure sensor further includes a body mounted to an inner surface of the respective shell member within the internal cavity. A sensing element has a first side exposed to external air pressure through a passage in the respective shell member, and an opposite second side exposed to a reference pressure. Control circuitry within the body generates a variable output signal as a function of a pressure differential between the external air pressure and reference pressure experienced by the sensing element.
    Type: Application
    Filed: March 14, 2011
    Publication date: December 4, 2014
    Inventors: Wei Xiong, Danian Zhang, Xiongzhe Huang, Jing Wang, Jingyun Xia
  • Patent number: 8025476
    Abstract: A method for controlling operation of a wind turbine is described. The wind turbine includes a rotor having a plurality of rotor blades and an upwind wind condition measurement device. The method includes measuring a wind condition upwind from the rotor using the upwind wind condition measurement device and providing the measured wind condition to a processor. The method also includes determining a control algorithm parameter, based at least partially on the measured wind condition, that controls at least one of a wind turbine response bandwidth, a wind turbine response speed, and a wind turbine control error range. The method also includes determining a wind turbine operating command based at least partially on the control algorithm parameter and applying the wind turbine operating command to operation of the wind turbine.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: September 27, 2011
    Assignee: General Electric Company
    Inventors: Danian Zheng, Xiongzhe Huang
  • Patent number: 7772713
    Abstract: A control system for a wind turbine having a tower, a generator, and at least one rotor blade. The control system includes a sensor configured to measure an angle of inclination of the tower with respect to a surface, at least one pitch assembly configured to adjust a pitch angle of the rotor blade, and a controller configured to control at least one of the pitch assembly and the generator based on the measured angle of inclination.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: August 10, 2010
    Assignee: General Electric Company
    Inventors: Xiongzhe Huang, Danian Zheng, Wei Xiong
  • Publication number: 20100133827
    Abstract: A control system for a wind turbine having a tower, a generator, and at least one rotor blade. The control system includes a sensor configured to measure an angle of inclination of the tower with respect to a surface, at least one pitch assembly configured to adjust a pitch angle of the rotor blade, and a controller configured to control at least one of the pitch assembly and the generator based on the measured angle of inclination.
    Type: Application
    Filed: September 30, 2009
    Publication date: June 3, 2010
    Inventors: Xiongzhe Huang, Danian Zheng, Wei Xiong
  • Publication number: 20100135789
    Abstract: A method for controlling operation of a wind turbine is described. The wind turbine includes a rotor having a plurality of rotor blades and an upwind wind condition measurement device. The method includes measuring a wind condition upwind from the rotor using the upwind wind condition measurement device and providing the measured wind condition to a processor. The method also includes determining a control algorithm parameter, based at least partially on the measured wind condition, that controls at least one of a wind turbine response bandwidth, a wind turbine response speed, and a wind turbine control error range. The method also includes determining a wind turbine operating command based at least partially on the control algorithm parameter and applying the wind turbine operating command to operation of the wind turbine.
    Type: Application
    Filed: September 30, 2009
    Publication date: June 3, 2010
    Inventors: Danian Zheng, Xiongzhe Huang