Patents by Inventor Xiyu Ke

Xiyu Ke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210030692
    Abstract: Described are new biodegradable nanoparticle platforms for encapsulation and sustained release of protein therapeutics through a scalable and reproducible method. Specifically nanoparticles comprising a complex comprising a protein, or peptide, and a counter ion polymer are described.
    Type: Application
    Filed: January 29, 2019
    Publication date: February 4, 2021
    Inventors: Hai-Quan Mao, Sashank Reedy, Xiyu Ke, Chenhu Qiu, Daniel Lucena Comingues, Gregory P. Howard
  • Patent number: 10702610
    Abstract: Polythioaminal polymers are made from hexahydrotriazine precursors and dithiol precursors. The precursors are blended together and subjected to mild heating to make the polymers. The polymers have the general structure wherein each R1 is independently an organic or hetero-organic group, each R2 is independently a substituent having molecular weight no more than about 120 Daltons, X and Z are each a sulfur-bonded species, at least one of X and Z is not hydrogen, and n is an integer greater than or equal to 1. X and Z may be hydrogen or a functional group, such as a thiol-reactive group. The reactive thiol groups of the polythioaminal may be used to attach thiol-reactive end capping species. By using water soluble or water degradable dithiols, such as polyether dithiols, water soluble polythioaminals may be made. Some such polymers may be used to deliver therapeutics with non-toxic aqueous degradation products.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: July 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Willy Chin, Jeannette M. Garcia, James L. Hedrick, Xiyu Ke, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20180369397
    Abstract: Polythioaminal polymers are made from hexahydrotriazine precursors and dithiol precursors. The precursors are blended together and subjected to mild heating to make the polymers. The polymers have the general structure wherein each R1 is independently an organic or hetero-organic group, each R2 is independently a substituent having molecular weight no more than about 120 Daltons, X and Z are each a sulfur-bonded species, at least one of X and Z is not hydrogen, and n is an integer greater than or equal to 1. X and Z may be hydrogen or a functional group, such as a thiol-reactive group. The reactive thiol groups of the polythioaminal may be used to attach thiol-reactive end capping species. By using water soluble or water degradable dithiols, such as polyether dithiols, water soluble polythioaminals may be made. Some such polymers may be used to deliver therapeutics with non-toxic aqueous degradation products.
    Type: Application
    Filed: August 29, 2018
    Publication date: December 27, 2018
    Inventors: James HEDRICK, Dylan BODAY, Jeannette GARCIA, Willy CHIN, Xiyu KE, Rudy WOJTECKI, Yi YANG
  • Patent number: 10080806
    Abstract: Polythioaminal polymers are made from hexahydrotriazine precursors and dithiol precursors. The precursors are blended together and subjected to mild heating to make the polymers. The polymers have the general structure wherein each R1 is independently an organic or hetero-organic group, each R2 is independently a substituent having molecular weight no more than about 120 Daltons, X and Z are each a sulfur-bonded species, at least one of X and Z is not hydrogen, and n is an integer greater than or equal to 1. X and Z may be hydrogen or a functional group, such as a thiol-reactive group. The reactive thiol groups of the polythioaminal may be used to attach thiol-reactive end capping species. By using water soluble or water degradable dithiols, such as polyether dithiols, water soluble polythioaminals may be made. Some such polymers may be used to deliver therapeutics with non-toxic aqueous degradation products.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Willy Chin, Jeannette M. Garcia, James L. Hedrick, Xiyu Ke, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 9901649
    Abstract: Amphiphilic block copolymers (BCPs) were prepared comprising a poly(ethylene oxide) block and a biodegradable polycarbonate block functionalized with disulfide groups and carboxylic acid groups. The BCPs form self-assembled micellar particles in aqueous solution that can be loaded with hydrophobic drugs for therapeutic drug delivery. The loaded particles have small particle sizes (<100 nm), narrow particle size distributions, and high drug loading capacity (up to about 50 wt %) based on total dry weight of the loaded particles. Particles loaded with DOX released the DOX in response to changes in pH and glutathione (GSH) redox chemistry. The loaded particles efficiently delivered and released DOX within tumor cells, effectively suppressing growth of the tumor cells at a similar or even lower drug concentration than free DOX. Blank particles containing no DOX did not induce cytotoxicity to cells.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: February 27, 2018
    Assignees: International Business Machines Corporation, Agency For Science, Technology and Research
    Inventors: Willy Chin, Yukti Choudhury, Shujun Gao, James L. Hedrick, Xiyu Ke, Min-Han Tan, Jye Yng Teo, Yi Yan Yang
  • Publication number: 20170319704
    Abstract: Amphiphilic block copolymers (BCPs) were prepared comprising a poly(ethylene oxide) block and a biodegradable polycarbonate block functionalized with disulfide groups and carboxylic acid groups. The BCPs form self-assembled micellar particles in aqueous solution that can be loaded with hydrophobic drugs for therapeutic drug delivery. The loaded particles have small particle sizes (<100 nm), narrow particle size distributions, and high drug loading capacity (up to about 50 wt %) based on total dry weight of the loaded particles. Particles loaded with DOX released the DOX in response to changes in pH and glutathione (GSH) redox chemistry. The loaded particles efficiently delivered and released DOX within tumor cells, effectively suppressing growth of the tumor cells at a similar or even lower drug concentration than free DOX. Blank particles containing no DOX did not induce cytotoxicity to cells.
    Type: Application
    Filed: May 3, 2016
    Publication date: November 9, 2017
    Inventors: Willy Chin, Yukti Choudhury, Shujun Gao, James L. Hedrick, Xiyu Ke, Min-Han Tan, Jye Yng Teo, Yi Yan Yang
  • Patent number: 9717797
    Abstract: Nanoparticles comprise a drug, a first block polymer and a second block polymer. The first block polymer has a poly(ethylene oxide) (PEO) block and a polycarbonate block bearing a side chain aromatic nitrogen-containing heterocycle (N-heterocycle). The N-heterocycle can be in the form of a base, a hydrosalt of the base, a sulfobetaine adduct of the base, or a combination thereof. The second block polymer has a PEO block and a polycarbonate block bearing a side chain catechol group, which can be present as a catechol, oxidized form of a catechol, and/or a polymerized form of a catechol. The nanoparticles can be dispersed in water and are capable of controlled release of the drug.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: August 1, 2017
    Assignees: International Business Machines Corporation, Agency For Science, Technology And Research, Universidad del ParĂ­s Vasco/Euskal Herriko Unibertsitatea
    Inventors: Julian M. W. Chan, Amanda C. Engler, James L. Hedrick, Xiyu Ke, Victor W. L. Ng, Haritz Sardon, Jeremy P. K. Tan, Yi Yan Yang
  • Publication number: 20170049902
    Abstract: Polythioaminal polymers are made from hexahydrotriazine precursors and dithiol precursors. The precursors are blended together and subjected to mild heating to make the polymers. The polymers have the general structure wherein each R1 is independently an organic or hetero-organic group, each R2 is independently a substituent having molecular weight no more than about 120 Daltons, X and Z are each a sulfur-bonded species, at least one of X and Z is not hydrogen, and n is an integer greater than or equal to 1. X and Z may be hydrogen or a functional group, such as a thiol-reactive group. The reactive thiol groups of the polythioaminal may be used to attach thiol-reactive end capping species. By using water soluble or water degradable dithiols, such as polyether dithiols, water soluble polythioaminals may be made. Some such polymers may be used to deliver therapeutics with non-toxic aqueous degradation products.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 23, 2017
    Inventors: James HEDRICK, Dylan BODAY, Jeannette GARCIA, Rudy WOJTECKI, Willy CHIN, Xiyu KE, Yi Yan YANG
  • Patent number: 9469726
    Abstract: Water soluble biodegradable polymers were prepared by an organoacid catalyzed ring opening polymerization (ROP) of a cyclic carbonate monomer bearing an active ester side chain. The initial polymer comprising an active ester side chain was treated with an amino-alcohol, which transformed the active ester groups to N-substituted amide groups bearing mono-hydroxy alkyl groups and/or dihydroxy alkyl groups, thereby forming the water soluble polymers. The water-soluble polymers are non-toxic and exhibit stealth properties in buffered serum solution.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: October 18, 2016
    Assignees: International Business Machines Corporation, Agency For Science, Technology And Research
    Inventors: Daniel J. Coady, Amanda C. Engler, James L. Hedrick, Xiyu Ke, Yi Yan Yang
  • Publication number: 20160095933
    Abstract: Water soluble biodegradable polymers were prepared by an organoacid catalyzed ring opening polymerization (ROP) of a cyclic carbonate monomer bearing an active ester side chain. The initial polymer comprising an active ester side chain was treated with an amino-alcohol, which transformed the active ester groups to N-substituted amide groups bearing mono-hydroxy alkyl groups and/or dihydroxy alkyl groups, thereby forming the water soluble polymers. The water-soluble polymers are non-toxic and exhibit stealth properties in buffered serum solution.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 7, 2016
    Inventors: Daniel J. Coady, Amanda C. Engler, James L. Hedrick, Xiyu Ke, Yi Yan Yang
  • Publication number: 20150157723
    Abstract: Nanoparticles comprise a drug, a first block polymer and a second block polymer. The first block polymer has a poly(ethylene oxide) (PEO) block and a polycarbonate block bearing a side chain aromatic nitrogen-containing heterocycle (N-heterocycle). The N-heterocycle can be in the form of a base, a hydrosalt of the base, a sulfobetaine adduct of the base, or a combination thereof. The second block polymer has a PEO block and a polycarbonate block bearing a side chain catechol group, which can be present as a catechol, oxidized form of a catechol, and/or a polymerized form of a catechol. The nanoparticles can be dispersed in water and are capable of controlled release of the drug.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 11, 2015
    Applicants: International Business Machines Corporation, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Agency For Science, Technology and Research
    Inventors: Julian M. W. Chan, Amanda C. Engler, James L. Hedrick, Xiyu Ke, Victor W.L. Ng, Haritz Sardon, Jeremy P. K. Tan, Yi Yan Yang