Patents by Inventor Xu Tian

Xu Tian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8278647
    Abstract: One or more quantum dots are used to control current flow in a transistor. Instead of being disposed in a channel between source and drain, the quantum dot (or dots) are vertically separated from the source and drain by an insulating layer. Current can tunnel between the source/drain electrodes and the quantum dot (or dots) by tunneling through the insulating layer. Quantum dot energy levels can be controlled with one or more gate electrodes capacitively coupled to some or all of the quantum dot(s). Current can flow between source and drain if a quantum dot energy level is aligned with the energy of incident tunneling electrons. Current flow between source and drain is inhibited if no quantum dot energy level is aligned with the energy of incident tunneling electrons. Here energy level alignment is understood to have a margin of about the thermal energy (e.g., 26 meV at room temperature).
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: October 2, 2012
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Motor Co., Ltd
    Inventors: Timothy P. Holme, Friedrich B. Prinz, Xu Tian
  • Publication number: 20120208518
    Abstract: An apparatus for controlling User Equipments (UEs) in a communication system including a source cell and a destination cell is provided. A frequency and the scrambling codes of signals transmitted by a base station of the destination cell are the same as a frequency and scrambling codes of signals transmitted by a base station of the source cell. After the UE receives the signals, the signals are regarded as being transmitted by the source cell, and the UE is woken up by information over a Paging Indication Channel (PICH) and a Paging Channel (PCH), and then the UE reads information configured by the destination cell and carried over the common channel of the signals, and performs corresponding operations according to the information. The information over the PICH and the PCH wakes up the specified UE.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Inventors: Mingyi Deng, Xu Tian, Qiongtao Ren
  • Publication number: 20100181551
    Abstract: One or more quantum dots are used to control current flow in a transistor. Instead of being disposed in a channel between source and drain, the quantum dot (or dots) are vertically separated from the source and drain by an insulating layer. Current can tunnel between the source/drain electrodes and the quantum dot (or dots) by tunneling through the insulating layer. Quantum dot energy levels can be controlled with one or more gate electrodes capacitively coupled to some or all of the quantum dot(s). Current can flow between source and drain if a quantum dot energy level is aligned with the energy of incident tunneling electrons. Current flow between source and drain is inhibited if no quantum dot energy level is aligned with the energy of incident tunneling electrons. Here energy level alignment is understood to have a margin of about the thermal energy (e.g., 26 meV at room temperature).
    Type: Application
    Filed: January 15, 2010
    Publication date: July 22, 2010
    Inventors: Timothy P. Holme, Friedrich B. Prinz, Xu Tian
  • Publication number: 20090218311
    Abstract: A method of fabricating a layer-structured catalysts at the electrode/electrolyte interface of a fuel cell is provided. The method includes providing a substrate, depositing an electrolyte layer on the substrate, depositing a catalyst bonding layer to the electrolyte layer, depositing a catalyst layer to the catalyst bonding layer, and depositing a microstructure stabilizing layer to the catalyst layer, where the bonding layer improves adhesion of the catalyst onto the electrolyte. The catalyst and a current collector is a porous catalyst and a fully dense current collector, or a fully dense catalyst and a fully dense current collector structure layer. A nano-island catalyst and current collector structure layer is deposited over the catalyst and current collector or over the bonding layer, which is deposited over the electrolyte layer. The fuel cell can be hydrogen-fueled solid oxide, solid oxide with hydrocarbons, solid sensor, solid acid, polymer electrolyte or direct methanol.
    Type: Application
    Filed: October 31, 2008
    Publication date: September 3, 2009
    Inventors: Xirong Jiang, Xu Tian, Friedrich B. Prinz, Stacey F. Bent, Joon Hyung Shim, Masayuki Sugawara, Hong Huang