Patents by Inventor Xuanqi Huang

Xuanqi Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230106300
    Abstract: Fabricating a vertical-channel junction field-effect transistor includes forming an unintentionally doped GaN layer on a bulk GaN layer by metalorganic chemical vapor deposition, forming a Cr/SiO2 hard mask on the unintentionally doped GaN layer, patterning a fin by electron beam lithography, defining the Cr and SiO2 hard masks by reactive ion etching, improving a regrowth surface with inductively coupled plasma etching, removing hard mask residuals, regrowing a p-GaN layer, selectively etching the p-GaN layer, forming gate electrodes by electron beam evaporation, and forming source and drain electrodes by electron beam evaporation. The resulting vertical-channel junction field-effect transistor includes a doped GaN layer, an unintentionally doped GaN layer on the doped GaN layer, and a p-GaN regrowth layer on the unintentionally doped GaN layer. Portions of the p-GaN regrowth layer are separated by a vertical channel of the unintentionally doped GaN layer.
    Type: Application
    Filed: November 4, 2022
    Publication date: April 6, 2023
    Inventors: Yuji Zhao, Chen Yang, Houqiang Fu, Xuanqi Huang, Kai Fu
  • Patent number: 11495694
    Abstract: Fabricating a vertical-channel junction field-effect transistor includes forming an unintentionally doped GaN layer on a bulk GaN layer by metalorganic chemical vapor deposition, forming a Cr/SiO2 hard mask on the unintentionally doped GaN layer, patterning a fin by electron beam lithography, defining the Cr and SiO2 hard masks by reactive ion etching, improving a regrowth surface with inductively coupled plasma etching, removing hard mask residuals, regrowing a p-GaN layer, selectively etching the p-GaN layer, forming gate electrodes by electron beam evaporation, and forming source and drain electrodes by electron beam evaporation. The resulting vertical-channel junction field-effect transistor includes a doped GaN layer, an unintentionally doped GaN layer on the doped GaN layer, and a p-GaN regrowth layer on the unintentionally doped GaN layer. Portions of the p-GaN regrowth layer are separated by a vertical channel of the unintentionally doped GaN layer.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: November 8, 2022
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Yuji Zhao, Chen Yang, Houqiang Fu, Xuanqi Huang, Kai Fu
  • Publication number: 20220013671
    Abstract: Fabricating a vertical-channel junction field-effect transistor includes forming an unintentionally doped GaN layer on a bulk GaN layer by metalorganic chemical vapor deposition, forming a Cr/SiO2 hard mask on the unintentionally doped GaN layer, patterning a fin by electron beam lithography, defining the Cr and SiO2 hard masks by reactive ion etching, improving a regrowth surface with inductively coupled plasma etching, removing hard mask residuals, regrowing a p-GaN layer, selectively etching the p-GaN layer, forming gate electrodes by electron beam evaporation, and forming source and drain electrodes by electron beam evaporation. The resulting vertical-channel junction field-effect transistor includes a doped GaN layer, an unintentionally doped GaN layer on the doped GaN layer, and a p-GaN regrowth layer on the unintentionally doped GaN layer. Portions of the p-GaN regrowth layer are separated by a vertical channel of the unintentionally doped GaN layer.
    Type: Application
    Filed: July 12, 2021
    Publication date: January 13, 2022
    Inventors: Yuji Zhao, Chen Yang, Houqiang Fu, Xuanqi Huang, Kai Fu
  • Patent number: 11189717
    Abstract: A steep-slope (SS) field effect transistor (FET) including a FET having a source region and a drain region, and a threshold switching device in direct contact with the source region or the drain region of the FET. Fabricating the steep-slope (SS) field effect transistor (FET) includes fabricating an AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT) having a source region and a drain region, depositing a first electrode layer directly on the source region or the drain region, depositing a threshold switching layer directly on the first electrode layer, and depositing a second electrode layer directly on the threshold switching layer.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: November 30, 2021
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Xuanqi Huang, Yuji Zhao, Runchen Fang, Hugh Barnaby
  • Publication number: 20200287069
    Abstract: A solar cell including a nonpolar m-plane GaN substrate, an n-type III-nitride layer, a III-nitride active region, and a p-type III-nitride layer. In one example, the solar cell includes a nonpolar m-plane GaN substrate, a Si-doped GaN layer, a multiplicity of InGaN/GaN layers, and and a Mg-doped GaN layer. A working temperature range of the solar cell is from room temperature to about 500° C., an external quantum efficiency of the solar cell increases by at least a factor of 2 from room temperature to 500° C., and a temperature coefficient of the solar cell is greater than zero up to 350° C.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 10, 2020
    Inventors: Xuanqi Huang, Yuji Zhao
  • Publication number: 20200227546
    Abstract: A steep-slope (SS) field effect transistor (FET) including a FET having a source region and a drain region, and a threshold switching device in direct contact with the source region or the drain region of the FET. Fabricating the steep-slope (SS) field effect transistor (FET) includes fabricating an AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT) having a source region and a drain region, depositing a first electrode layer directly on the source region or the drain region, depositing a threshold switching layer directly on the first electrode layer, and depositing a second electrode layer directly on the threshold switching layer.
    Type: Application
    Filed: January 10, 2020
    Publication date: July 16, 2020
    Inventors: Xuanqi Huang, Yuji Zhao, Runchen Fang, Hugh Barnaby