Patents by Inventor Xuanyuan Tu

Xuanyuan Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11686848
    Abstract: Systems and methods for training object detection models using adversarial examples are provided. A method includes obtaining a training scene and identifying a target object within the training scene. The method includes obtaining an adversarial object and generating a modified training scene based on the adversarial object, the target object, and the training scene. The modified training scene includes the training scene modified to include the adversarial object placed on the target object. The modified training scene is input to a machine-learned model configured to detect the training object. A detection score is determined based on whether the training object is detected, and the machine-learned model and the parameters of the adversarial object are trained based on the detection output. The machine-learned model is trained to maximize the detection output. The parameters of the adversarial object are trained to minimize the detection output.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: June 27, 2023
    Assignee: UATC, LLC
    Inventors: Xuanyuan Tu, Sivabalan Manivasagam, Mengye Ren, Ming Liang, Bin Yang, Raquel Urtasun
  • Publication number: 20220153298
    Abstract: Techniques for generating testing data for an autonomous vehicle (AV) are described herein. A system can obtain sensor data descriptive of a traffic scenario. The traffic scenario can include a subject vehicle and actors in an environment. Additionally, the system can generate a perturbed trajectory for a first actor in the environment based on perturbation values. Moreover, the system can generate simulated sensor data. The simulated sensor data can include data descriptive of the perturbed trajectory for the first actor in the environment. Furthermore, the system can provide the simulated sensor data as input to an AV control system. The AV control system can be configured to process the simulated sensor data to generate an updated trajectory for the subject vehicle in the environment. Subsequently, the system can evaluate an adversarial loss function based on the updated trajectory for the subject vehicle to generate an adversarial loss value.
    Type: Application
    Filed: November 17, 2021
    Publication date: May 19, 2022
    Inventors: Jingkang Wang, Ava Alison Pun, Xuanyuan Tu, Mengye Ren, Abbas Sadat, Sergio Casas, Sivabalan Manivasagam, Raquel Urtasun
  • Publication number: 20220032452
    Abstract: Systems and methods for streaming sensor packets in real-time are provided. An example method includes obtaining a sensor data packet representing a first portion of a three-hundred and sixty degree view of a surrounding environment of a robotic platform. The method includes generating, using machine-learned model(s), a local feature map based at least in part on the sensor data packet. The local feature map is indicative of local feature(s) associated with the first portion of the three-hundred and sixty degree view. The method includes updating, based at least in part on the local feature map, a spatial map to include the local feature(s). The spatial map includes previously extracted local features associated with a previous sensor data packet representing a different portion of the three-hundred and sixty degree view than the first portion. The method includes determining an object within the surrounding environment based on the updated spatial map.
    Type: Application
    Filed: July 29, 2021
    Publication date: February 3, 2022
    Inventors: Sergio Casas, Davi Eugenio Nascimento Frossard, Shun Da Suo, Xuanyuan Tu, Raquel Urtasun
  • Publication number: 20220032970
    Abstract: Systems and methods for improved vehicle-to-vehicle communications are provided. A system can obtain sensor data depicting its surrounding environment and input the sensor data (or processed sensor data) to a machine-learned model to perceive its surrounding environment based on its location within the environment. The machine-learned model can generate an intermediate environmental representation that encodes features within the surrounding environment. The system can receive a number of different intermediate environmental representations and corresponding locations from various other systems, aggregate the representations based on the corresponding locations, and perceive its surrounding environment based on the aggregated representations. The system can determine relative poses between the each of the systems and an absolute pose for each system based on the representations.
    Type: Application
    Filed: January 15, 2021
    Publication date: February 3, 2022
    Inventors: Nicholas Baskar Vadivelu, Mengye Ren, Xuanyuan Tu, Raquel Urtasun, Jingkang Wang
  • Publication number: 20210279640
    Abstract: Systems and methods for vehicle-to-vehicle communications are provided. An adverse system can obtain sensor data representative of an environment proximate to a targeted system. The adverse system can generate an intermediate representation of the environment and a representation deviation for the intermediate representation. The representation deviation can be designed to disrupt a machine-learned model associated with the target system. The adverse system can communicate the intermediate representation modified by the representation deviation to the target system. The target system can train the machine-learned model associated with the target system to detect the modified intermediate representation. Detected modified intermediate representations can be discarded before disrupting the machine-learned model.
    Type: Application
    Filed: January 15, 2021
    Publication date: September 9, 2021
    Inventors: Xuanyuan Tu, Raquel Urtasun, Tsu-shuan Wang, Sivabalan Manivasagam, Jingkang Wang, Mengye Ren