Patents by Inventor Xuefeng Tim Tao

Xuefeng Tim Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9416874
    Abstract: A method for learning the bite point of a position-controlled clutch in a vehicle having an engine and a transmission includes commanding an engagement of a clutch fork via a controller when the transmission is in park and the engine is idling. The method also includes controlling an apply position of the clutch via the controller, calculating a clutch torque capacity of the clutch, and measuring the apply position via a position sensor. The apply position is recorded as the clutch bite point when the calculated clutch torque capacity equals a calibrated clutch torque capacity. The transmission is then controlled using the recorded clutch bite point. A system includes the transmission, input clutches, and a controller configured to execute the method. A vehicle includes an engine, the transmission, the position-controlled input clutch, and the controller, as well as a clutch position sensor.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: August 16, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: David H. Vu, Xuefeng Tim Tao, Jayson S. Schwalm, Craig J. Hawkins, Jeryl McIver
  • Patent number: 9340212
    Abstract: A system according to the principles of the present disclosure includes a longitudinal acceleration estimation module, a vehicle longitudinal acceleration sensor, a road grade estimation module, and an actuator control module. The longitudinal acceleration estimation module estimates a longitudinal acceleration of a vehicle based on at least one of a transmission output speed and a wheel speed. The vehicle longitudinal acceleration sensor measures the longitudinal acceleration of the vehicle. The road grade estimation module estimates a grade of a road on which the vehicle is traveling based on the estimated longitudinal acceleration and the measured longitudinal acceleration. The actuator control module controls an actuator of the vehicle based on the estimated road grade.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: May 17, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Xuefeng Tim Tao, Richard L. Tiberg, Thomas M. Sherman, David William Minner, Hualin Tan
  • Patent number: 9273778
    Abstract: A method of controlling a transmission includes selecting a target speed of a second shaft, and measuring a second speed of the second shaft and an output speed of an output shaft. The method includes detecting a rolling neutral condition wherein a first and second clutch are uncoupled from a torque generator and a synchronizer is mated to a predicted gear to apply a load in a direction, and one of a first condition wherein the output speed is decreasing and the target speed is less than the second speed and a second condition wherein the output speed is increasing and the target speed is less than the second speed. The method then includes translating the synchronizer away from the predicted gear, coupling and decoupling the second clutch to and from the torque generator, and mating the synchronizer to the predicted gear to again apply the load in the direction.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: March 1, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Christopher Jay Weingartz, Matthew D. Whitton, Xuefeng Tim Tao, Craig J. Hawkins
  • Publication number: 20160033034
    Abstract: A method of controlling a transmission includes selecting a target speed of a second shaft, and measuring a second speed of the second shaft and an output speed of an output shaft. The method includes detecting a rolling neutral condition wherein a first and second clutch are uncoupled from a torque generator and a synchronizer is mated to a predicted gear to apply a load in a direction, and one of a first condition wherein the output speed is decreasing and the target speed is less than the second speed and a second condition wherein the output speed is increasing and the target speed is less than the second speed. The method then includes translating the synchronizer away from the predicted gear, coupling and decoupling the second clutch to and from the torque generator, and mating the synchronizer to the predicted gear to again apply the load in the direction.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Inventors: Christopher Jay Weingartz, Matthew D. Whitton, Xuefeng Tim Tao, Craig J. Hawkins
  • Publication number: 20150369364
    Abstract: A method for learning the bite point of a position-controlled clutch in a vehicle having an engine and a transmission includes commanding an engagement of a clutch fork via a controller when the transmission is in park and the engine is idling. The method also includes controlling an apply position of the clutch via the controller, calculating a clutch torque capacity of the clutch, and measuring the apply position via a position sensor. The apply position is recorded as the clutch bite point when the calculated clutch torque capacity equals a calibrated clutch torque capacity. The transmission is then controlled using the recorded clutch bite point. A system includes the transmission, input clutches, and a controller configured to execute the method. A vehicle includes an engine, the transmission, the position-controlled input clutch, and the controller, as well as a clutch position sensor.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 24, 2015
    Inventors: David H. Vu, Xuefeng Tim Tao, Jayson S. Schwalm, Craig J. Hawkins, Jeryl McIver
  • Publication number: 20150274174
    Abstract: A system according to the principles of the present disclosure includes a longitudinal acceleration estimation module, a vehicle longitudinal acceleration sensor, a road grade estimation module, and an actuator control module. The longitudinal acceleration estimation module estimates a longitudinal acceleration of a vehicle based on at least one of a transmission output speed and a wheel speed. The vehicle longitudinal acceleration sensor measures the longitudinal acceleration of the vehicle. The road grade estimation module estimates a grade of a road on which the vehicle is traveling based on the estimated longitudinal acceleration and the measured longitudinal acceleration. The actuator control module controls an actuator of the vehicle based on the estimated road grade.
    Type: Application
    Filed: May 30, 2014
    Publication date: October 1, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: XUEFENG TIM TAO, RICHARD L. TIBERG, THOMAS M. SHERMAN, DAVID WILLIAM MINNER, HUALIN TAN
  • Patent number: 9127729
    Abstract: A method of learning a kiss point of a first clutch of a dual clutch transmission includes controlling a rotational speed of the input shaft to be within a pre-determined range. When both the first clutch and the second clutch are determined to be disengaged from the input shaft, and the rotational speed of the input shaft is within the pre-determined range, then the first clutch is moved from a disengaged position into an engaged position. An increase in a rotational speed of a first transmission shaft, which is coupled to the first clutch, is detected. When the increase in the rotational speed of the first transmission shaft is detected, a position of the first clutch is identified. The identified position of the first clutch is saved in a memory of a transmission control module as a learned first clutch kiss point.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: September 8, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Xuefeng Tim Tao, Daniel Deras, Jayson S. Schwalm, Jeryl McIver
  • Patent number: 9057434
    Abstract: A method of identifying a synchronous position of a synchronizer actuator fork includes sensing a deceleration rate of a first shaft, when a synchronizer is positioned in a neutral position, to define a first rate of deceleration. The synchronizer is moved along the first shaft from the neutral position toward a gear with a synchronizer actuator fork. A deceleration rate of the first shaft is sensed, while the synchronizer actuator fork moves the synchronizer along the first shaft, to identify a change from the first rate of deceleration to a second rate of deceleration. The location, of the synchronizer actuator fork relative to the first shaft, at which the rate of acceleration of the first shaft changes from the first rate of deceleration to the second rate of deceleration, is identified as the synchronous position of the synchronizer actuator fork.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: June 16, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Xuefeng Tim Tao, Matthew Kempeinen, Jeryl McIver, Christopher Jay Weingartz, David H. Vu
  • Patent number: 8983678
    Abstract: A system for a vehicle includes a speed determination module, a buffer module, and a speed prediction module. The speed determination module determines changes in measured vehicle speed. The buffer module stores the determined changes in measured vehicle speed. The speed prediction module predicts a speed of the vehicle when the measured vehicle speed is less than a predetermined threshold, wherein the predicted vehicle speed is based on an average of the stored changes in measured vehicle speed.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: March 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Justin Louie, Xuefeng Tim Tao
  • Publication number: 20150051803
    Abstract: A method of learning a kiss point of a first clutch of a dual clutch transmission includes controlling a rotational speed of the input shaft to be within a pre-determined range. When both the first clutch and the second clutch are determined to be disengaged from the input shaft, and the rotational speed of the input shaft is within the pre-determined range, then the first clutch is moved from a disengaged position into an engaged position. An increase in a rotational speed of a first transmission shaft, which is coupled to the first clutch, is detected. When the increase in the rotational speed of the first transmission shaft is detected, a position of the first clutch is identified. The identified position of the first clutch is saved in a memory of a transmission control module as a learned first clutch kiss point.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 19, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xuefeng Tim Tao, Daniel Deras, Jayson S. Schwalm, Jeryl McIver
  • Patent number: 8914186
    Abstract: A method of controlling thermal loading in a multi-speed dual-clutch transmission (DCT) that is paired with an internal combustion engine in a vehicle is provided. The method includes detecting operation of the vehicle and ascertaining a degree of thermal loading on the DCT. The method also includes selecting a remedial action corresponding to the ascertained degree of thermal loading. Additionally, the method includes activating the selected remedial action such that the thermal loading on the DCT is reduced. A vehicle having a DCT, an internal combustion engine, and a controller configured to control thermal loading in the DCT is also disclosed.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: December 16, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Xuefeng Tim Tao, John William Boughner, Alfonso G. Hysko, Jonathan P. Kish, Matthew D. Whitton, Fei An, Steven P. Moorman
  • Publication number: 20140358383
    Abstract: A method of identifying a synchronous position of a synchronizer actuator fork includes sensing a deceleration rate of a first shaft, when a synchronizer is positioned in a neutral position, to define a first rate of deceleration. The synchronizer is moved along the first shaft from the neutral position toward a gear with a synchronizer actuator fork. A deceleration rate of the first shaft is sensed, while the synchronizer actuator fork moves the synchronizer along the first shaft, to identify a change from the first rate of deceleration to a second rate of deceleration. The location, of the synchronizer actuator fork relative to the first shaft, at which the rate of acceleration of the first shaft changes from the first rate of deceleration to the second rate of deceleration, is identified as the synchronous position of the synchronizer actuator fork.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Xuefeng Tim Tao, Matthew Kempeinen, Jeryl McIver, Christopher Jay Weingartz, David H. Vu
  • Patent number: 8831845
    Abstract: A method of controlling a dual clutch transmission includes repeatedly moving a synchronizer into interlocking engagement with a first gear with an actuator fork, and repeatedly sensing a position of the actuator fork for each occurrence that the actuator fork moves the synchronizer into the interlocking engagement with the first gear. The sensed positions of the actuator fork are averaged to define a first engaged position of the actuator fork for engaging the first gear. A second engaged position at which the actuator fork couples the synchronizer to a second gear may be determined in the same manner. A neutral position may be determined by identifying the axial locations of peak acceleration of the actuator fork while moving between the first engaged position and the second engaged position. The identified axial locations are averaged to define the neutral position of the actuator fork.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Xuefeng Tim Tao, Matthew Kempeinen, Christopher Jay Weingartz, Jeryl McIver, David H Vu
  • Patent number: 8827868
    Abstract: A method of cooling a multi-speed dual-clutch transmission (DCT) that is paired with an internal combustion engine in a vehicle includes detecting operation of the vehicle. The method also includes sensing an increase in temperature of a subsystem of the DCT while the vehicle is operating. The method also includes selecting a remedial action in response to the sensed temperature. The method aditionally includes activating the selected remedial action such that the temperature of the subsystem is reduced.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Xuefeng Tim Tao, John William Boughner, Alfonso G. Hysko, Jonathan P. Kish, Matthew D. Whitton, Fei An, Steven P. Moorman
  • Patent number: 8612192
    Abstract: A vehicle simulation system includes a first simulation model that when executed simulates a software ring along with other software of a vehicle module. The vehicle simulation system further includes a second simulation model of the software ring. A bypass switch that has a first state and a second state. A bypass switching module switches the bypass switch between the first simulation model and the second simulation model based on a bypass signal and a ring enabling signal. A simulation control module executes code of a vehicle simulation model including software in-the-loop (SIL) testing of a selected one of the first simulation model and the second simulation model based on state of the bypass switch.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: December 17, 2013
    Inventors: Johan Larsson, Tobias Berndtson, Kenneth K. Lang, Xuefeng Tim Tao, Colin Hultengren, Michael A. Kropinski, Manmeet Mavi, Sriram Venkataramanan, David W. Wright
  • Patent number: 8600633
    Abstract: A dual-clutch transmission (DCT) system includes a vehicle speed offset module that generates a vehicle speed offset signal based on a preselect time and a vehicle acceleration signal. A compensated vehicle speed module generates a compensated vehicle speed based on the vehicle speed offset signal and a vehicle speed. A preselect command module generates a predicted gear signal based on a comparison between the compensated vehicle speed and a shift point from a shift pattern module. The predicted gear signal, identifies a first predicted gear of a DCT. The preselect time is defined as at least an amount of time to disengage a second predicted gear and preengage the first predicted gear.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: December 3, 2013
    Inventors: Xuefeng Tim Tao, Donald D. Crites
  • Patent number: 8600631
    Abstract: A method for controlling actuation of a torque converter clutch includes monitoring a transmission input speed, comparing the monitored transmission input speed to a threshold input speed, and, when the transmission input speed is less than the threshold input speed, controlling an engine speed based upon a desired minimum engine speed. Controlling the engine speed based upon the desired minimum engine speed includes monitoring a minimum engine speed critical parameter, determining the desired minimum engine speed based upon the minimum engine speed critical parameter, comparing the engine speed to the desired minimum engine speed, and controlling actuation of the clutch device based upon a result of the comparing the engine speed to the desired minimum engine speed.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: December 3, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunhao J. Lee, Kumaraswamy V. Hebbale, Xu Chen, Paul G Otanez, Xuefeng Tim Tao, Farzad Samie
  • Publication number: 20130282243
    Abstract: A method of controlling thermal loading in a multi-speed dual-clutch transmission (DCT) that is paired with an internal combustion engine in a vehicle is provided. The method includes detecting operation of the vehicle and ascertaining a degree of thermal loading on the DCT. The method also includes selecting a remedial action corresponding to the ascertained degree of thermal loading. Additionally, the method includes activating the selected remedial action such that the thermal loading on the DCT is reduced. A vehicle having a DCT, an internal combustion engine, and a controller configured to control thermal loading in the DCT is also disclosed.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xuefeng Tim Tao, John William Boughner, Alfonso G. Hysko, Jonathan P. Kish, Matthew D. Whitton, Fei An, Steven P. Moorman
  • Patent number: 8560192
    Abstract: A control system includes a pressure control solenoid and a flow control solenoid having an input in fluid communication with the pressure control solenoid. A piston adjusts a position of a shift fork and includes a first area in fluid communication with the pressure control solenoid and a second area in fluid communication with the flow control solenoid. A fork sensor senses a position of a shift fork. A flow determining module determines a fork velocity for the shift fork, adjusts the fork velocity to generate an adjusted fork velocity based on the position, and generates a flow command for the flow control solenoid based on the adjusted fork velocity. A pressure determining module generates a pressure command for the pressure control solenoid. The shift fork is at least one of moved from a sync position to an engaged position and from an engaged position to a neutral position.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: October 15, 2013
    Inventors: Christopher Jay Weingartz, Steven P. Moorman, Xuefeng Tim Tao, Chinar S. Ghike, Andreas Gustavsson
  • Publication number: 20130240315
    Abstract: A method of cooling a multi-speed dual-clutch transmission (DCT) that is paired with an internal combustion engine in a vehicle includes detecting operation of the vehicle. The method also includes sensing an increase in temperature of a subsystem of the DCT while the vehicle is operating. The method also includes selecting a remedial action in response to the sensed temperature. The method aditionally includes activating the selected remedial action such that the temperature of the subsystem is reduced.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: XUEFENG TIM TAO, JOHN WILLIAM BOUGHNER, ALFONSO G. HYSKO, JONATHAN P. KISH, MATTHEW D. WHITTON, FEI AN, STEVEN P. MOORMAN