Patents by Inventor Xuegeng Li

Xuegeng Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9905718
    Abstract: A low cost concentrating photovoltaic system includes a condenser system having refractive or reflective optics and a photovoltaic module having one or more thin film solar cells. The thin film solar cells may be a-Si, CdTe, Cu(InGa)Se2, organic solar cell or dye sensitized solar cells. The condenser system may be a flat, cylindrical or hemispherical Fresnel lens, a parabolic reflector, a compound parabolic concentrator, a reflective V-trough, or a combination thereof. The condenser system has a concentration ratio of about 10 to 100 or higher. No tracking system is needed in many examples, or a simple one-axis tracking may be used. In one example, the condenser system uses a hemispherical Fresnel lens which focuses sunlight onto a hemispherical focal surface, and one thin film solar cell (mounted on a tracking unit) or multiple cells (without tracking) are disposed on the hemispherical focal surface of the Fresnel lens.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 27, 2018
    Assignee: PU NI TAI YANG NENG (HANGZHOU) CO., LIMITED
    Inventors: Dong Wang, Pingrong Yu, Xuegeng Li
  • Patent number: 8968438
    Abstract: A particle collection apparatus is disclosed. The apparatus includes a baghouse housing comprising an entrance port, a collection port, a baghouse configured between the entrance port and the collection port, and a vacuum port coupled to the baghouse. The apparatus also includes a collection mechanism coupled to the collection port; and, a compression mechanism coupled to the baghouse.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: March 3, 2015
    Assignee: Innovalight, Inc.
    Inventors: Raul Cortez, Xuegeng Li, Christopher Alcantara, Karel Vanheusden
  • Patent number: 8963270
    Abstract: A method for fabricating thin film solar cells for a concentrated photovoltaic system uses three shadow masks. The first mask, used to deposit a back contact layer, has multiple horizontal and vertical lines defining columns and rows of cells, and multiple tabs each located in a cell along a center of a vertical border. The second mask, used to deposit a CIGS absorption layer, a window layer and a transparent contact layer, is similar to the first mask except the tabs are located along the opposite vertical border of the cells. The third mask, used to deposit a metal grid layer, has multiple bus bar openings and finger openings. Each bus bar opening is located along a horizontal center line of a cell and overlaps the second tab of a neighboring cell. The cells in a horizontal row are connected in series, forming a linear solar receiver.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: February 24, 2015
    Assignee: Pu Ni Tai Neng (HangZhou) Co., Limited
    Inventors: Dong Wang, Pingrong Yu, Xuegeng Li
  • Patent number: 8945673
    Abstract: An apparatus for producing grafted Group IV nanoparticles is provided and includes a source of Group IV nanoparticles. A chamber is configured to carry the nanoparticles in a gas phase and has an inlet and an exit. The inlet configured to couple to an organic molecule source which is configured to provide organic molecules to the chamber. A plasma source is arranged to generate a plasma. The plasma causes the organic molecules to break down and/or activate in the chamber and bond to the nanoparticles. A method of producing grafted Group IV nanoparticles is also provided and includes receiving Group IV nanoparticles in a gas phase, creating a plasma with the nanoparticles, and allowing the organic molecules to break down and/or become activated in the plasma and bond with the nanoparticles.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: February 3, 2015
    Assignees: Regents of the University of Minnesota, Innovalight, Inc.
    Inventors: Lorenzo Mangolini, Uwe Kortshagen, Rebecca J. Anthony, David Jurbergs, Xuegeng Li, Elena Rogojina
  • Publication number: 20140045293
    Abstract: A method for fabricating thin film solar cells for a concentrated photovoltaic system uses three shadow masks. The first mask, used to deposit a back contact layer, has multiple horizontal and vertical lines defining columns and rows of cells, and multiple tabs each located in a cell along a center of a vertical border. The second mask, used to deposit a CIGS absorption layer, a window layer and a transparent contact layer, is similar to the first mask except the tabs are located along the opposite vertical border of the cells. The third mask, used to deposit a metal grid layer, has multiple bus bar openings and finger openings. Each bus bar opening is located along a horizontal center line of a cell and overlaps the second tab of a neighboring cell. The cells in a horizontal row are connected in series, forming a linear solar receiver.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Applicant: PU NI TAI YANG NENG (HANGZHOU) CO., LIMITED
    Inventors: Dong Wang, Pingrong Yu, Xuegeng Li
  • Publication number: 20140041708
    Abstract: A low cost concentrating photovoltaic system includes a condenser system having refractive or reflective optics and a photovoltaic module having one or more thin film solar cells. The thin film solar cells may be a-Si, CdTe, Cu(InGa)Se2, organic solar cell or dye sensitized solar cells. The condenser system may be a flat, cylindrical or hemispherical Fresnel lens, a parabolic reflector, a compound parabolic concentrator, a reflective V-trough, or a combination thereof. The condenser system has a concentration ratio of about 10 to 100 or higher. No tracking system is needed in many examples, or a simple one-axis tracking may be used. In one example, the condenser system uses a hemispherical Fresnel lens which focuses sunlight onto a hemispherical focal surface, and one thin film solar cell (mounted on a tracking unit) or multiple cells (without tracking) are disposed on the hemispherical focal surface of the Fresnel lens.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Applicant: PU NI TAI YANG NENG (HANGZHOU) CO., LIMITED
    Inventors: Dong Wang, Pingrong Yu, Xuegeng Li
  • Publication number: 20140044875
    Abstract: An in-line multi-stage physical vapor deposition chamber is disclosed. The deposition chamber includes a cylindrical shaped main body, multiple dividers disposed within the main body and extending in radial directions to divide the interior space of the main body into multiple fan shaped zones, and a cylindrical shaped substrate holder disposed coaxially with the main body. The substrate holder is rotatable around a central axis, and individual substrates or a continuous flexible substrate is mounted on the substrate holder parallel to the central axis. Multiple metal source holders are disposed on the cylindrical sidewall of the main body in at least some of zones for mounting metal sources. Some zones are provided with heating mechanisms for heating the substrate. A load-lock chamber is connected to the main body for loading and unloading substrates into and from a first zone.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Applicant: Pu Ni Tai Yang Neng (HangZhou) Co., Limited
    Inventors: Dong Wang, Pingrong Yu, Xuegeng Li, Zhiqian Su
  • Patent number: 8471170
    Abstract: A plasma processing apparatus for producing a set of Group IV semiconductor nanoparticles from a precursor gas is disclosed. The apparatus includes an outer dielectric tube, the outer tube including an outer tube inner surface and an outer tube outer surface, wherein the outer tube inner surface has an outer tube inner surface etching rate. The apparatus also includes an inner dielectric tube, the inner dielectric tube including an inner tube outer surface, wherein the outer tube inner surface and the inner tube outer surface define an annular channel, and further wherein the inner tube outer surface has an inner tube outer surface etching rate. The apparatus further includes a first outer electrode, the first outer electrode having a first outer electrode inner surface disposed on the outer tube outer surface.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: June 25, 2013
    Assignee: Innovalight, Inc.
    Inventors: Xuegeng Li, Christopher Alcantara, Maxim Kelman, Elena Rogojina, Eric Schiff, Mason Terry, Karel Vanheusden
  • Publication number: 20120094033
    Abstract: An apparatus for producing grafted Group IV nanoparticles is provided and includes a source of Group IV nanoparticles. A chamber is configured to carry the nanoparticles in a gas phase and has an inlet and an exit. The inlet configured to couple to an organic molecule source which is configured to provide organic molecules to the chamber. A plasma source is arranged to generate a plasma. The plasma causes the organic molecules to break down and/or activate in the chamber and bond to the nanoparticles. A method of producing grafted Group IV nanoparticles is also provided and includes receiving Group IV nanoparticles in a gas phase, creating a plasma with the nanoparticles, and allowing the organic molecules to break down and/or become activated in the plasma and bond with the nanoparticles.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 19, 2012
    Inventors: Lorenzo Mangolini, Uwe Kortshagen, Rebecca J. Anthony, David Jurbergs, Xuegeng Li, Elena Rogojina
  • Patent number: 7718707
    Abstract: A set of nanoparticles is disclosed. Each nanoparticle of the set of nanoparticles is comprised of a set of Group IV atoms arranged in a substantially spherical configuration. Each nanoparticle of the set of nanoparticles further having a sphericity of between about 1.0 and about 2.0; a diameter of between about 4 nm and about 100 nm; and a sintering temperature less than a melting temperature of the set of Group IV atoms.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: May 18, 2010
    Assignee: Innovalight, Inc.
    Inventors: Maxim Kelman, Xuegeng Li, Pingrong Yu, Karel Vanheusden, David Jurbergs
  • Publication number: 20090255222
    Abstract: A particle collection apparatus is disclosed. The apparatus includes a baghouse housing comprising an entrance port, a collection port, a baghouse configured between the entrance port and the collection port, and a vacuum port coupled to the baghouse. The apparatus also includes a collection mechanism coupled to the collection port; and, a compression mechanism coupled to the baghouse.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 15, 2009
    Inventors: Raul Cortez, Xuegeng Li, Christopher Alcantara, Karel Vanheusden
  • Publication number: 20090044661
    Abstract: A plasma processing apparatus for producing a set of Group IV semiconductor nanoparticles from a precursor gas is disclosed. The apparatus includes an outer dielectric tube, the outer tube including an outer tube inner surface and an outer tube outer surface, wherein the outer tube inner surface has an outer tube inner surface etching rate. The apparatus also includes an inner dielectric tube, the inner dielectric tube including an inner tube outer surface, wherein the outer tube inner surface and the inner tube outer surface define an annular channel, and further wherein the inner tube outer surface has an inner tube outer surface etching rate. The apparatus further includes a first outer electrode, the first outer electrode having a first outer electrode inner surface disposed on the outer tube outer surface.
    Type: Application
    Filed: May 1, 2008
    Publication date: February 19, 2009
    Inventors: Xuegeng Li, Christopher Alcantara, Maxim Kelman, Elena Rogojina, Eric Schiff, Mason Terry, Karel Vanheusden
  • Publication number: 20090026421
    Abstract: An apparatus for making a set of Group IV nanoparticles is disclosed. The apparatus includes a top plate, the top plate further including an outlet port; a bottom plate; and a casing extending between the top plate and the bottom plate. The apparatus also includes a particle collector assembly configured to be in fluid communication with the outlet port; and a primary precursor tubing assembly passing through the bottom plate into the casing, the primary precursor tubing assembly including a primary precursor tubing assembly nozzle.
    Type: Application
    Filed: March 24, 2008
    Publication date: January 29, 2009
    Inventors: Xuegeng Li, David Jurbergs
  • Publication number: 20090014423
    Abstract: The present invention provides a radiofrequency plasma apparatus for the production of nanoparticles and method for producing nanoparticles using the apparatus. The apparatus is designed to provide high throughput and makes the continuous production of bulk quantities of high-quality crystalline nanoparticles possible. The electrode assembly of the plasma apparatus includes an outer electrode and a central electrode arranged in a concentric relationship to define an annular flow channel between the electrodes.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 15, 2009
    Inventors: Xuegeng Li, Maxim Kelman, Mason Terry, Elena Rogojina, Eric Schiff, Karel Vanheusden
  • Publication number: 20080220175
    Abstract: An apparatus for producing grafted Group IV nanoparticles is provided and includes a source of Group IV nanoparticles. A chamber is configured to carry the nanoparticles in a gas phase and has an inlet and an exit. The inlet configured to couple to an organic molecule source which is configured to provide organic molecules to the chamber. A plasma source is arranged to generate a plasma. The plasma causes the organic molecules to break down and/or activate in the chamber and bond to the nanoparticles. A method of producing grafted Group IV nanoparticles is also provided and includes receiving Group IV nanoparticles in a gas phase, creating a plasma with the nanoparticles, and allowing the organic molecules to break down and/or become activated in the plasma and bond with the nanoparticles.
    Type: Application
    Filed: January 22, 2008
    Publication date: September 11, 2008
    Inventors: Lorenzo Mangolini, Uwe Kortshagen, Rebecca J. Anthony, David Jurbergs, Xuegeng Li, Elena Rogojina
  • Publication number: 20080191193
    Abstract: A method for creating an organically capped Group IV semiconductor nanoparticle is disclosed. The method includes flowing a Group IV semiconductor precursor gas into a chamber. The method also includes generating a set of Group IV semiconductor precursor radical species from the Group IV semiconductor precursor gas with a laser pyrolysis apparatus, wherein the set of the Group IV semiconductor precursor radical species nucleate to form the Group IV semiconductor nanoparticle; and flowing an organic capping agent precursor gas into the chamber. The method further includes generating a set of organic capping agent radical species from the organic capping agent precursor gas, wherein the set of organic capping agent radical species reacts with a surface of the Group IV semiconductor nanoparticle and forms the organically capped Group IV semiconductor nanoparticle.
    Type: Application
    Filed: December 31, 2007
    Publication date: August 14, 2008
    Inventors: Xuegeng Li, Elena Rogojina, David Jurbergs, Damian Aherne
  • Publication number: 20080152938
    Abstract: A set of nanoparticles is disclosed. Each nanoparticle of the set of nanoparticles is comprised of a set of Group IV atoms arranged in a substantially spherical configuration. Each nanoparticle of the set of nanoparticles further having a sphericity of between about 1.0 and about 2.0; a diameter of between about 4 nm and about 100 nm; and a sintering temperature less than a melting temperature of the set of Group IV atoms.
    Type: Application
    Filed: August 21, 2007
    Publication date: June 26, 2008
    Inventors: Maxim Kelman, Xuegeng Li, Pingrong Yu, Karel Vanheusden, David Jurbergs
  • Publication number: 20080138966
    Abstract: A method of fabricating a densified nanoparticle thin film with a set of occluded pores in a chamber is disclosed. The method includes positioning a substrate in the chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method further includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 5 minutes and about 60 minutes, wherein the solvent is substantially removed, and a porous compact with a set of pores is formed. The method also includes heating the porous compact to a second temperature between about 300° C. and about 900° C., and for a second time period of between about 5 minutes and about 15 minutes, and flowing a precursor gas into the chamber at a partial pressure between about 0.
    Type: Application
    Filed: November 14, 2007
    Publication date: June 12, 2008
    Inventors: Elena V. Rogojina, Francesco Lemmi, Maxim Kelman, Xuegeng Li, Pingrong Yu
  • Patent number: 7371666
    Abstract: A process for producing brightly photoluminescent silicon nanoparticles with an emission spanning the visible spectrum is disclosed. In one aspect, the process involves reacting a silicon precursor in the presence of a sheath gas with heat from a radiation beam under conditions effective to produce silicon nanoparticles and acid etching the silicon nanoparticles under conditions effective to produce photoluminescent silicon nanoparticles. Methods for stabilizing photoluminescence of photoluminescent silicon nanoparticles are also disclosed.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: May 13, 2008
    Assignee: The Research Foundation of State University of New York
    Inventors: Mark T. Swihart, Xuegeng Li, Yuanqing He
  • Publication number: 20060225534
    Abstract: The present invention discloses a process for producing nickel nanoparticles. The process involves heating a nickel precursor generated in situ in the presence of a carrier gas under conditions effective to decompose the nickel precursor and produce nickel nanoparticles.
    Type: Application
    Filed: October 12, 2005
    Publication date: October 12, 2006
    Applicant: The Research Foundation of State University of New York
    Inventors: Mark Swihart, Yuanqing He, Xuegeng Li