Patents by Inventor Xuejin YAN

Xuejin YAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230133316
    Abstract: A laser comprising a photonic component comprising a gain medium; and a waveguide platform comprising a Distributed Bragg Reflector, DBR, section. The photonic component is optically coupled to the waveguide platform. One or more thermal heaters are positioned at the DBR section of the waveguide platform, and/or at a phase section of the waveguide platform located between the gain medium and the DBR section.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 4, 2023
    Inventor: Xuejin YAN
  • Patent number: 10283932
    Abstract: An apparatus comprising a laser comprising an active layer and configured to emit an optical signal, wherein a temperature change of the laser causes the optical signal to shift in wavelength, and a heater thermally coupled to the active layer and configured to reduce a wavelength shift of the optical signal by applying heat to the active layer.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: May 7, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xuejin Yan, Jianmin Gong, Hongbing Lei, Jianhe Gao
  • Patent number: 9843397
    Abstract: An optical network unit (ONU) comprising a media access controller (MAC) configured to support biasing a laser transmitter to compensate for temperature related wavelength drift receiving a transmission timing instruction from an optical network control node, obtaining transmission power information for the laser transmitter, estimating a burst mode time period for the laser transmitter according to the transmission timing instruction, and calculating a laser phase fine tuning compensation value for the laser transmitter according to the burst mode time period and the transmission power information, and forwarding the laser phase fine tuning compensation value toward a bias controller to support biasing a phase of the laser transmitter.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: December 12, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Feng Wang, Xuejin Yan, Bo Gao, Frank Effenberger
  • Patent number: 9817251
    Abstract: An optical filter comprising a first distributed Bragg reflector (DBR) layer, a second DBR layer, and an intrinsic semiconductor layer positioned between the first DBR layer and the second DBR layer, with the intrinsic semiconductor layer providing a passband wavelength for the optical filter based on a carrier density of the intrinsic semiconductor layer.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: November 14, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Jianmin Gong, Xuejin Yan, Dekun Liu, Liqiang Yu, Shengping Li, Jing Hu
  • Publication number: 20170315386
    Abstract: An optical filter comprising a first distributed Bragg reflector (DBR) layer, a second DBR layer, and an intrinsic semiconductor layer positioned between the first DBR layer and the second DBR layer, with the intrinsic semiconductor layer providing a passband wavelength for the optical filter based on a carrier density of the intrinsic semiconductor layer.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 2, 2017
    Inventors: Jianmin Gong, Xuejin Yan, Dekun Liu, Liqiang Yu, Shengping Li, Jing Hu
  • Patent number: 9768903
    Abstract: An approach to proving a flexible grid architecture for time and wavelength division multiplexed passive optical networks is described. One embodiment includes an optical transmitter array configured to transmit an optical signal, an optical combiner coupled to the optical transmitter array configured to receive unlocked wavelengths from the optical transmitter array and output a single optical signal, and an optical amplifier coupled to the optical combiner configured to boost downstream optical power. In some embodiments, a WDM filter is coupled to the optical amplifier, and a tunable optical network unit (ONU) coupled to the WDM filter is configured to transmit and receive the optical signals. In still other embodiments, a cyclic demultiplexer is coupled to the optical splitter and connects to an optical receiver array configured to receive optical signals.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: September 19, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xuejin Yan, Feng Wang
  • Publication number: 20170070030
    Abstract: An apparatus comprising a laser comprising an active layer and configured to emit an optical signal, wherein a temperature change of the laser causes the optical signal to shift in wavelength, and a heater thermally coupled to the active layer and configured to reduce a wavelength shift of the optical signal by applying heat to the active layer.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 9, 2017
    Inventors: Xuejin Yan, Jianmin Gong, Hongbing Lei, Jianhe Gao
  • Patent number: 9577408
    Abstract: A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: February 21, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Hongmin Chen, Xuejin Yan, Rongsheng Miao, Xiao Shen, Zongrong Liu
  • Patent number: 9560428
    Abstract: An apparatus comprising a first tunable transmitter array comprising a first tunable transmitter and a second tunable transmitter and a cyclic array waveguide grating (AWG) wavelength router coupled to the first tunable transmitter array, wherein the cyclic AWG wavelength router comprises a plurality of input ports and a plurality of output ports, wherein the cyclic AWG wavelength router is configured to receive a first optical signal emitted from a first tunable transmitter via a first input port of the plurality of input ports, receive a second optical signal emitted from a second tunable transmitter via the first input port of the plurality of input ports, and route the first optical signal and the second optical signal to the output ports dependent on one or more wavelengths used to encode the first optical signal and the second optical signal.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: January 31, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventor: Xuejin Yan
  • Patent number: 9537287
    Abstract: An apparatus comprising a burst-mode laser comprising an active layer and configured to emit an optical signal during a burst period, wherein a temperature change of the burst-mode laser causes the optical signal to shift in wavelength, and a heater thermally coupled to the active layer and configured to reduce a wavelength shift of the optical signal during the burst period by applying heat to the active layer based on timing of the burst period.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: January 3, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xuejin Yan, Jianmin Gong, Hongbing Lei, Jianhe Gao
  • Publication number: 20160337071
    Abstract: An approach to proving a flexible grid architecture for time and wavelength division multiplexed passive optical networks is described. One embodiment includes an optical transmitter array configured to transmit an optical signal, an optical combiner coupled to the optical transmitter array configured to receive unlocked wavelengths from the optical transmitter array and output a single optical signal, and an optical amplifier coupled to the optical combiner configured to boost downstream optical power. In some embodiments, a WDM filter is coupled to the optical amplifier, and a tunable optical network unit (ONU) coupled to the WDM filter is configured to transmit and receive the optical signals. In still other embodiments, a cyclic demultiplexer is coupled to the optical splitter and connects to an optical receiver array configured to receive optical signals.
    Type: Application
    Filed: July 25, 2016
    Publication date: November 17, 2016
    Inventors: Xuejin Yan, Feng Wang
  • Patent number: 9436021
    Abstract: The present application provides a tunable optical filter, including: a substrate, a tunable filter unit, a temperature control unit, and an enclosure, where: the substrate, the tunable filter unit, and the temperature control unit are placed inside the enclosure, where the enclosure includes a light incidence window and a light emergence window; the substrate is disposed adjacent to the light incidence window or the light emergence window, and configured to support the tunable filter unit; the temperature control unit is disposed on a surface of the tunable filter unit, and configured to adjust a channel wavelength of the tunable filter unit by means of temperature control; and optical paths of the light incidence window, the tunable filter unit and the light emergence window are aligned. The present application further provides an optical receive component, an optical transceiver component, and a multi-wavelength passive optical network system.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 6, 2016
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Fei Ye, Jianhe Gao, Xuejin Yan
  • Patent number: 9432140
    Abstract: An approach to proving a flexible grid architecture for time and wavelength division multiplexed passive optical networks is described. One embodiment includes an optical transmitter array configured to transmit an optical signal, an optical combiner coupled to the optical transmitter array configured to receive unlocked wavelengths from the optical transmitter array and output a single optical signal, and an optical amplifier coupled to the optical combiner configured to boost downstream optical power. In some embodiments, a WDM filter is coupled to the optical amplifier, and a tunable optical network units (ONUs) coupled to the WDM filter configured to transmit and receive the optical signals. In still other embodiments, a cyclic demultiplexer is coupled to the optical splitter and connects to an optical receiver array configured to receive optical signals.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: August 30, 2016
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xuejin Yan, Feng Wang
  • Publication number: 20160142151
    Abstract: An optical network unit (ONU) comprising a media access controller (MAC) configured to support biasing a laser transmitter to compensate for temperature related wavelength drift receiving a transmission timing instruction from an optical network control node, obtaining transmission power information for the laser transmitter, estimating a burst mode time period for the laser transmitter according to the transmission timing instruction, and calculating a laser phase fine tuning compensation value for the laser transmitter according to the burst mode time period and the transmission power information, and forwarding the laser phase fine tuning compensation value toward a bias controller to support biasing a phase of the laser transmitter.
    Type: Application
    Filed: January 27, 2016
    Publication date: May 19, 2016
    Inventors: Feng Wang, Xuejin Yan, Bo Gao, Frank Effenberger
  • Publication number: 20160118772
    Abstract: A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.
    Type: Application
    Filed: December 31, 2015
    Publication date: April 28, 2016
    Applicant: Futurewei Technologies, Inc.
    Inventors: Hongmin CHEN, Xuejin YAN, Rongsheng MIAO, Xiao SHEN, Zongrong LIU
  • Publication number: 20160111856
    Abstract: An apparatus comprising a burst-mode laser comprising an active layer and configured to emit an optical signal during a burst period, wherein a temperature change of the burst-mode laser causes the optical signal to shift in wavelength, and a heater thermally coupled to the active layer and configured to reduce a wavelength shift of the optical signal during the burst period by applying heat to the active layer based on timing of the burst period.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 21, 2016
    Inventors: Xuejin Yan, Jianmin Gong, Hongbing Lei, Jianhe Gao
  • Patent number: 9281899
    Abstract: An optical network unit (ONU) comprising a media access controller (MAC) configured to support biasing a laser transmitter to compensate for temperature related wavelength drift receiving a transmission timing instruction from an optical network control node, obtaining transmission power information for the laser transmitter, estimating a burst mode time period for the laser transmitter according to the transmission timing instruction, and calculating a laser phase fine tuning compensation value for the laser transmitter according to the burst mode time period and the transmission power information, and forwarding the laser phase fine tuning compensation value toward a bias controller to support biasing a phase of the laser transmitter.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: March 8, 2016
    Assignee: Futurewei Technologies, Inc.
    Inventors: Feng Wang, Xuejin Yan, Bo Gao, Frank Effenberger
  • Patent number: 9246307
    Abstract: An apparatus comprising a burst-mode laser comprising an active layer and configured to emit an optical signal during a burst period, wherein a temperature change of the burst-mode laser causes the optical signal to shift in wavelength, and a heater thermally coupled to the active layer and configured to reduce a wavelength shift of the optical signal during the burst period by applying heat to the active layer based on timing of the burst period.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: January 26, 2016
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xuejin Yan, Jianmin Gong, Hongbing Lei, Jianhe Gao
  • Patent number: 9231361
    Abstract: A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: January 5, 2016
    Assignee: Futurewei Technologies, Inc.
    Inventors: Hongmin Chen, Xuejin Yan, Rongsheng Miao, Xiao Shen, Zongrong Liu
  • Patent number: 9106050
    Abstract: A tunable optical transmitter, comprising a tunable laser comprising a distributed Bragg reflector (DBR) section, a phase section, and a gain section, a photodiode detector (PD) optically coupled to the tunable laser, wherein the tunable optical transmitter lacks a temperature controller, and wherein the tunable optical transmitter is configured to lock onto a wavelength at different operating temperatures.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: August 11, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventor: Xuejin Yan