Patents by Inventor Xuejun Liao
Xuejun Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250068927Abstract: A system, method, and computer-program product includes receiving an input comprising a plurality of pre-defined factor matrices and an implicit feedback dataset partitioned into a plurality of implicit feedback data subsets; distributing the input across a controller node and a plurality of worker nodes implemented in a distributed computing environment; and training a model using the controller node and the plurality of worker nodes, wherein training the model includes: initializing, by the controller node, a controller-specific user parameters matrix and a controller-specific item parameters matrix, broadcasting, by the controller node, the controller-specific user parameters matrix and the controller-specific item parameters matrix to each worker node of the plurality of worker nodes, and concurrently executing an aggregation model training algorithm at the controller node and a plurality of localized model training algorithms across the plurality of worker nodes until a training termination condition isType: ApplicationFiled: February 21, 2024Publication date: February 27, 2025Applicant: SAS Institute Inc.Inventors: Xuejun Liao, Patrick Nathan Koch
-
Patent number: 11842379Abstract: The computing device obtains a training data set related to a plurality of historic user inputs associated with preferences of one or more services or items from an entity. For each of the one or more services or items, the computing device executes operations to train a plurality of models using the training data set to generate a plurality of recommended models, apply a validation data set to generate a plurality of predictions from the plurality of recommended models, obtain a weight of each metric of a plurality of metrics from the entity, obtain user inputs associated with user preferences, and determine a relevancy score for each metric. The computing device selects a recommended model based on the relevancy score of the selected metric or a combination of selected metrics, generates one or more recommendations for the users, and outputs the one or more generated recommendations to the users.Type: GrantFiled: February 15, 2023Date of Patent: December 12, 2023Assignee: SAS Institute Inc.Inventors: Jonathan Lee Walker, Hardi Desai, Xuejun Liao, Varunraj Valsaraj
-
Publication number: 20230267527Abstract: The computing device obtains a training data set related to a plurality of historic user inputs associated with preferences of one or more services or items from an entity. For each of the one or more services or items, the computing device executes operations to train a plurality of models using the training data set to generate a plurality of recommended models, apply a validation data set to generate a plurality of predictions from the plurality of recommended models, obtain a weight of each metric of a plurality of metrics from the entity, obtain user inputs associated with user preferences, and determine a relevancy score for each metric. The computing device selects a recommended model based on the relevancy score of the selected metric or a combination of selected metrics, generates one or more recommendations for the users, and outputs the one or more generated recommendations to the users.Type: ApplicationFiled: February 15, 2023Publication date: August 24, 2023Applicant: SAS Institute Inc.Inventors: Jonathan Lee Walker, Hardi Desai, Xuejun Liao, Varunraj Valsaraj
-
Patent number: 11544767Abstract: A computing device determines a recommendation. A confidence matrix is computed using a predefined weight value. (A) A first parameter matrix is updated using the confidence matrix, a predefined response matrix, a first step-size parameter value, and a first direction matrix. The predefined response matrix includes a predefined response value by each user to each item and at least one matrix value for which a user has not provided a response to an item. (B) A second parameter matrix is updated using the confidence matrix, the predefined response matrix, a second step-size parameter value, and a second direction matrix. (C) An objective function value is updated based on the first and second parameter matrices. (D) The first and second parameter matrices are trained by repeating (A) through (C). The first and second parameter matrices output for use in predicting a recommended item for a requesting user.Type: GrantFiled: April 7, 2022Date of Patent: January 3, 2023Assignee: SAS Institute Inc.Inventors: Xuejun Liao, Patrick Nathan Koch
-
Publication number: 20220237685Abstract: A computing device determines a recommendation. A confidence matrix is computed using a predefined weight value. (A) A first parameter matrix is updated using the confidence matrix, a predefined response matrix, a first step-size parameter value, and a first direction matrix. The predefined response matrix includes a predefined response value by each user to each item and at least one matrix value for which a user has not provided a response to an item. (B) A second parameter matrix is updated using the confidence matrix, the predefined response matrix, a second step-size parameter value, and a second direction matrix. (C) An objective function value is updated based on the first and second parameter matrices. (D) The first and second parameter matrices are trained by repeating (A) through (C). The first and second parameter matrices output for use in predicting a recommended item for a requesting user.Type: ApplicationFiled: April 7, 2022Publication date: July 28, 2022Inventors: Xuejun Liao, Patrick Nathan Koch
-
Patent number: 11379743Abstract: A computing device determines a recommendation. (A) A first parameter matrix is updated using a first direction matrix and a first step-size parameter value that is greater than one. The first parameter matrix includes a row dimension equal to a number of users of a plurality of users included in a ratings matrix and the ratings matrix includes a missing matrix value. (B) A second parameter matrix is updated using a second direction matrix and a second step-size parameter value that is greater than one. The second parameter matrix includes a column dimension equal to a number of items of a plurality of items included in the ratings matrix. (C) An objective function value is updated based on the first parameter matrix and the second parameter matrix. (D) (A) through (C) are repeated until the first parameter matrix and the second parameter matrix satisfy a convergence test.Type: GrantFiled: July 28, 2021Date of Patent: July 5, 2022Assignee: SAS Institute Inc.Inventors: Xuejun Liao, Patrick Nathan Koch, Shunping Huang, Yan Xu
-
Publication number: 20220138605Abstract: A computing device determines a recommendation. (A) A first parameter matrix is updated using a first direction matrix and a first step-size parameter value that is greater than one. The first parameter matrix includes a row dimension equal to a number of users of a plurality of users included in a ratings matrix and the ratings matrix includes a missing matrix value. (B) A second parameter matrix is updated using a second direction matrix and a second step-size parameter value that is greater than one. The second parameter matrix includes a column dimension equal to a number of items of a plurality of items included in the ratings matrix. (C) An objective function value is updated based on the first parameter matrix and the second parameter matrix. (D) (A) through (C) are repeated until the first parameter matrix and the second parameter matrix satisfy a convergence test.Type: ApplicationFiled: July 28, 2021Publication date: May 5, 2022Inventors: Xuejun Liao, Patrick Nathan Koch, Shunping Huang, Yan Xu
-
Publication number: 20080288255Abstract: A method of quantifying similarities between sequential data streams typically includes providing a pair of sequential data streams, designing a Hidden Markov Model (HMM) of at least a portion of each stream; and computing a quantitative measure of similarity between the streams using the HMMs. For a plurality of sequential data streams, a matrix of quantitative measures of similarity may be created. A spectral analysis may be performed on the matrix of quantitative measure of similarity matrix to define a multi-dimensional diffusion space, and the plurality of sequential data streams may be graphically represented and/or sorted according to the similarities therebetween. In addition, semi-supervised and active learning algorithms may be utilized to learn a user's preferences for data streams and recommend additional data streams that are similar to those preferred by the user. Multi-task learning algorithms may also be applied.Type: ApplicationFiled: May 16, 2008Publication date: November 20, 2008Inventors: Lawrence Carin, John Paisely, Yuting Qi, Xuejun Liao, Qiuhua Liu