Patents by Inventor Xuelei FU

Xuelei FU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240300892
    Abstract: The present invention provides MDM2 inhibitor compounds of Formula I, wherein the variables are defined above, which compounds are useful as therapeutic agents, particularly for the treatment of cancers. The present invention also relates to pharmaceutical compositions that contain an MDM2 inhibitor.
    Type: Application
    Filed: October 11, 2023
    Publication date: September 12, 2024
    Inventors: Michael D. Bartberger, Ana Gonzalez Buenrostro, Hilary Plake Beck, Xiaoqi Chen, Richard Victor Connors, Jeffrey Deignan, Jason A. Duquette, I, John Eksterowicz, Benjamin Fisher, Brian M. Fox, Jiasheng Fu, Zice Fu, Felix Gonzalez Lopez De Turiso, Michael W. Gribble, Darin J. Gustin, Julie A. Heath, Xin Huang, XianYun Jiao, Michael G. Johnson, Frank Kayser, David John Kopecky, SuJen Lai, Yihong Li, Zhihong Li, Jiwen Liu, Jonathan D. Low, Brian S. Lucas, Zhihua MA, Lawrence R. McGee, Joel McIntosh, Dustin L. McMinn, Julio C. Medina, Jeffrey Thomas Mihalic, Steven H. Olson, Yossup Rew, Philip M. Roveto, Daqing Sun, Xiaodong Wang, Yingcai Wang, Xuelei Yan, Ming Yu, Jiang Zhu
  • Patent number: 12055433
    Abstract: The present invention discloses a grating enhanced distributed vibration demodulation system based on three-pulse shearing interference, comprising: a laser device, a pulse optical modulator, a three-pulse generation polarization-maintaining structure, a first erbium-doped fiber amplifier, a first optical circulator, a fiber grating array, a second erbium-doped fiber amplifier, a second optical circulator, a three-in-three optical coupler, a first Faraday rotator mirror, a second Faraday rotator mirror, and a four-channel data acquisition card, On the basis of a distributed fiber grating vibration sensing system, three-pulse dislocation interference and three-in-three optical coupler digital phase demodulation technologies are adopted, XX and XY pulses are utilized to complement interference visibility, and demodulation is performed by selecting a better path, so that polarization fading resistance and interference signal high visibility in the distributed fiber grating vibration sensing system are realized.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: August 6, 2024
    Assignee: Wuhan University of Technology
    Inventors: Zhengying Li, Jun Wu, Zhenyu Deng, Xuelei Fu
  • Publication number: 20220326068
    Abstract: The present invention discloses a grating enhanced distributed vibration demodulation system based on three-pulse shearing interference, comprising: a laser device, a pulse optical modulator, a three-pulse generation polarization-maintaining structure, a first erbium-doped fiber amplifier, a first optical circulator, a fiber grating array, a second erbium-doped fiber amplifier, a second optical circulator, a three-in-three optical coupler, a first Faraday rotator mirror, a second Faraday rotator mirror, and a four-channel data acquisition card, On the basis of a distributed fiber grating vibration sensing system, three-pulse dislocation interference and three-in-three optical coupler digital phase demodulation technologies are adopted, XX and XY pulses are utilized to complement interference visibility, and demodulation is performed by selecting a better path, so that polarization fading resistance and interference signal high visibility in the distributed fiber grating vibration sensing system are realized.
    Type: Application
    Filed: January 21, 2022
    Publication date: October 13, 2022
    Applicant: Wuhan University of Technology
    Inventors: Zhengying LI, Jun WU, Zhenyu DENG, Xuelei FU
  • Patent number: 11462880
    Abstract: The present invention discloses a distributed pulsed light amplifier based on optical fiber parametric amplification, comprising a pump pulsed light source, a sensing pulsed light source, a synchronization device, a two-in-one optical coupler, an optical circulator, a parametric amplification optical fiber, a first optical filter, a photoelectric detector and a signal acquisition device. According to the distributed pulsed light amplifier, high-power pulsed light is used as pump light to generate an optical fiber parametric amplification effect near a zero-dispersion wavelength of an optical fiber, thereby amplifying a power of another sensing pulsed light. Meanwhile, due to the fact that effective optical fiber parametric amplification cannot be achieved through low-power light leakage outside a duration interval of the pump pulsed light, leaked light from the sensing pulsed light cannot be amplified, and the effect of amplifying a pulse extinction ratio can be achieved at the same time.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: October 4, 2022
    Assignee: Wuhan University of Technology
    Inventors: Zhengying Li, Xuelei Fu, Ben Xiong, Zhou Zheng
  • Publication number: 20220149584
    Abstract: The present invention discloses a distributed pulsed light amplifier based on optical fiber parameter amplification, comprising a pump pulsed light source, a sensing pulsed light source, a synchronization device, a two-in-one optical coupler, an optical circulator, a parameter amplification optical fiber, a first optical filter, a photoelectric detector and a signal acquisition device. According to the distributed pulsed light amplifier, high-power pulsed light is used as pump light to generate an optical fiber parameter amplification effect near a zero-dispersion wavelength of an optical fiber, thereby amplifying a power of another sensing pulsed light. Meanwhile, due to the fact that effective optical fiber parameter amplification cannot be achieved through low-power light leakage outside a duration interval of the pump pulsed light, leaked light from the sensing pulsed light cannot be amplified, and the effect of amplifying a pulse extinction ratio can be achieved at the same time.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Applicant: Wuhan University of Technology
    Inventors: Zhengying LI, Xuelei FU, Ben XIONG, Zhou ZHENG