Patents by Inventor Xueping Ru

Xueping Ru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9991176
    Abstract: Advanced interconnect technologies such as Through Silicon Vias (TSVs) have become an integral part of 3-D integration. Methods and systems and provided for laser-based acoustic techniques in which a short laser pulse generates broadband acoustic waves that propagate in the TSV structure. An optical interferometer detects the surface displacement caused by the acoustic waves reflecting within the structure as well as other acoustic waves traveling near the surface that has information about the structure dimensions and irregularities, such as voids. Features of voids, such as their location, are also identified based on the characteristics of the acoustic wave as it propagates through the via. Measurements typically take few seconds per site and can be easily adopted for in-line process monitoring.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: June 5, 2018
    Assignees: Rudolph Technologies, Inc., The Regents of the University of Colorado
    Inventors: Manjusha Mehendale, Michael Kotelyanskii, Todd W. Murray, Robin Mair, Priya Mukundhan, Jacob D. Dove, Xueping Ru, Jonathan Cohen, Timothy Kryman
  • Publication number: 20170221778
    Abstract: Advanced interconnect technologies such as Through Silicon Vias (TSVs) have become an integral part of 3-D integration. Methods and systems and provided for laser-based acoustic techniques in which a short laser pulse generates broadband acoustic waves that propagate in the TSV structure. An optical interferometer detects the surface displacement caused by the acoustic waves reflecting within the structure as well as other acoustic waves traveling near the surface that has information about the structure dimensions and irregularities, such as voids. Features of voids, such as their location, are also identified based on the characteristics of the acoustic wave as it propagates through the via. Measurements typically take few seconds per site and can be easily adopted for in-line process monitoring.
    Type: Application
    Filed: September 29, 2015
    Publication date: August 3, 2017
    Applicant: The Regents of the University of Colorado
    Inventors: Manjusha MEHENDALE, Michael KOTELYANSKII, Todd W. MURRAY, Robin MAIR, Priya MUKUNDHAN, Jacob D. DOVE, Xueping RU, Jonathan COHEN, Timothy KRYMAN
  • Publication number: 20090306941
    Abstract: A method includes accessing a structure model defining a cross-sectional profile of a structure on a sample. The cross-sectional profile is at least partially defined using a set of blocks. Each of the blocks includes a number of vertices. One or more of the vertices are expressed using one or more algebraic relationships between a number of parameters corresponding to the structure. Information is evaluated from the structure model to produce expected metrology data for a scatterometry-based optical metrology. The expected metrology data is suitable for use for determining one or more of the number of parameters corresponding to the structure. Apparatus are also disclosed.
    Type: Application
    Filed: May 14, 2007
    Publication date: December 10, 2009
    Inventors: Michael Kotelyanskii, Xueping Ru, Robert G. Wolf, Yue Yang