Patents by Inventor Xueti Tang

Xueti Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8422285
    Abstract: A method and system for providing a magnetic junction usable in a magnetic memory are described. The magnetic junction includes first and second pinned layers, first and second nonmagnetic spacer layers, and a free layer. The pinned layers are nonmagnetic layer-free and self-pinned. In some aspects, the magnetic junction is configured to allow the free and second pinned layers to be switched between stable magnetic states when write currents are passed therethrough. The magnetic junction has greater than two stable states. In other aspects, the magnetic junction includes at least third and fourth spacer layers, a second free layer therebetween, and a third pinned layer having a pinned layer magnetic moment, being nonmagnetic layer-free, and being coupled to the second pinned layer. The magnetic junction is configured to allow the free layers to be switched between stable magnetic states when write currents are passed therethrough.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: April 16, 2013
    Assignee: Grandis, Inc.
    Inventors: Dmytro Apalkov, Xueti Tang, Vladimir Nikitin, Alexander A. G. Driskill-Smith, Steven M. Watts, David Druist
  • Patent number: 8411497
    Abstract: A method and system for providing a magnetic memory are described. The method and system include providing magnetic storage cells, bit lines coupled with the magnetic storage cells, preset lines, and word lines coupled with the magnetic storage cells. Each magnetic storage cell includes magnetic element(s). The bit lines drive write current(s) through selected storage cell(s) of the magnetic storage cells to write to the selected storage cell(s). The preset lines drive preset current(s) in proximity to but not through the selected storage cell(s). The preset current(s) generate magnetic field(s) to orient the magnetic element(s) of the selected storage cell(s) in a direction. The word lines enable the selected storage cell(s) for writing. Either the bit lines reside between the preset lines and the storage cells or the preset lines reside between the storage cells and on a storage cell side of the bit lines.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: April 2, 2013
    Assignee: Grandis, Inc.
    Inventors: Adrian E. Ong, Xueti Tang
  • Publication number: 20130009260
    Abstract: A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the free layer and the pinned layer include at least one half-metal.
    Type: Application
    Filed: June 14, 2012
    Publication date: January 10, 2013
    Inventors: Dmytro Apalkov, Xueti Tang, Mohamad Towfik Krounbi, Vladimir Nikitin, Alexey Vasilyevitch Khvalkovskiy
  • Publication number: 20120319221
    Abstract: A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a first pinned layer having a first pinned layer magnetization, a first nonmagnetic spacer layer, and a free layer having an easy axis. The first nonmagnetic spacer layer is between the first pinned layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction and such that the free layer employs precessional switching.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Inventors: Dmytro Apalkov, Xueti Tang, Mohamad Towfik Krounbi, Vladimir Nikitin
  • Publication number: 20120267736
    Abstract: A magnetic junction usable in a magnetic memory and a method for providing the magnetic memory are described. The method includes providing a pinned layer, providing an engineered nonmagnetic tunneling barrier layer, and providing a free layer. The pinned layer and the free layer each include at least one ferromagnetic layer. The engineered nonmagnetic tunneling barrier layer has a tuned resistance area product. In some aspects, the step of providing the engineered nonmagnetic tunneling barrier layer further includes radio-frequency depositing a first oxide layer, depositing a metal layer, and oxidizing the metal layer to provide a second oxide.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 25, 2012
    Inventors: Kiseok Moon, Xueti Tang, Mohamad Towfik Krounbi
  • Publication number: 20120261776
    Abstract: A method and system provide a magnetic junction usable in a magnetic device. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, a free layer, and at least one damping reduction layer. The free layer has an intrinsic damping constant. The nonmagnetic spacer layer is between the pinned layer and the free layer. The at least one damping reduction layer is adjacent to at least a portion of the free layer and configured to reduce the intrinsic damping constant of the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 18, 2012
    Applicant: Samsung Electronics Co., LTD.
    Inventors: Xueti Tang, Vladimir Nikitin, Dmytro Apalkov, Kiseok Moon, Steven M. Watts
  • Publication number: 20120170357
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a pinned layer, a plurality of nonmagnetic spacer layers, and a plurality of free layers. The free layers are interleaved with the nonmagnetic spacer layers. A first nonmagnetic spacer layer of the nonmagnetic spacer layers is between the free layers and the pinned layer. Each of the free layers is configured to be switchable between stable magnetic states when a write current is passed through the magnetic junction. Each of the free layers has a critical switching current density. The critical switching current density of one of the free layers changes monotonically from the critical switching current density of an adjacent free layer. The adjacent free layer is between the pinned layer and the one of the plurality of free layers.
    Type: Application
    Filed: February 18, 2011
    Publication date: July 5, 2012
    Applicant: GRANDIS, INC.
    Inventors: Dmytro Apalkov, Xueti Tang, Vladimir Nikitin, Alexander A.G. Driskill-Smith
  • Publication number: 20120168885
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the pinned layer and the free layer includes a magnetic substructure. The magnetic substructure includes at least two magnetic layers interleaved with at least one insertion layer. Each insertion layer includes at least one of Cr, Ta, Ti, W, Ru, V, Cu, Mg, aluminum oxide, and MgO. The magnetic layers are exchange coupled.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 5, 2012
    Applicant: GRANDIS, INC.
    Inventors: Dmytro Apalkov, Xueti Tang, Vladimir Nikitin
  • Publication number: 20120155156
    Abstract: A method and system for providing a magnetic element and a magnetic memory utilizing the magnetic element are described. The magnetic element is used in a magnetic device that includes a contact electrically coupled to the magnetic element. The method and system include providing pinned, nonmagnetic spacer, and free layers. The free layer has an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy corresponding to a perpendicular anisotropy energy that is less than the out-of-plane demagnetization energy. The nonmagnetic spacer layer is between the pinned and free layers. The method and system also include providing a perpendicular capping layer adjoining the free layer and the contact. The perpendicular capping layer induces at least part of the perpendicular magnetic anisotropy in the free layer. The magnetic element is configured to allow the free layer to be switched between magnetic states when a write current is passed through the magnetic element.
    Type: Application
    Filed: February 25, 2011
    Publication date: June 21, 2012
    Applicant: Grandis, Inc.
    Inventors: Steven M. Watts, Zhitao Diao, Xueti Tang, Kiseok Moon, Mohamad Towfik Krounbi
  • Publication number: 20120012953
    Abstract: A method and system for providing a magnetic substructure usable in a magnetic device, as well as a magnetic element and memory using the substructure are described. The magnetic substructure includes a plurality of ferromagnetic layers and a plurality of nonmagnetic layers. The plurality of ferromagnetic layers are interleaved with the plurality of nonmagnetic layers. The plurality of ferromagnetic layers are immiscible with and chemically stable with respect to the plurality of nonmagnetic layers. The plurality of ferromagnetic layers are substantially free of a magnetically dead layer-producing interaction with the plurality of nonmagnetic layers. Further, the plurality of nonmagnetic layers induce a perpendicular anisotropy in the plurality of ferromagnetic layers. The magnetic substructure is configured to be switchable between a plurality of stable magnetic states when a write current is passed through the magnetic substructure.
    Type: Application
    Filed: November 6, 2010
    Publication date: January 19, 2012
    Applicant: GRANDIS, INC.
    Inventors: Daniel Lottis, Eugene Youjun Chen, Xueti Tang, Steven M. Watts
  • Publication number: 20110273928
    Abstract: A method and system for providing a magnetic memory are described. The method and system include providing magnetic storage cells, bit lines coupled with the magnetic storage cells, preset lines, and word lines coupled with the magnetic storage cells. Each magnetic storage cell includes magnetic element(s). The bit lines drive write current(s) through selected storage cell(s) of the magnetic storage cells to write to the selected storage cell(s). The preset lines drive preset current(s) in proximity to but not through the selected storage cell(s). The preset current(s) generate magnetic field(s) to orient the magnetic element(s) of the selected storage cell(s) in a direction. The word lines enable the selected storage cell(s) for writing. Either the bit lines reside between the preset lines and the storage cells or the preset lines reside between the storage cells and on a storage cell side of the bit lines.
    Type: Application
    Filed: May 5, 2010
    Publication date: November 10, 2011
    Applicant: GRANDIS, INC.
    Inventors: Adrian E. Ong, Xueti Tang
  • Publication number: 20110141804
    Abstract: A method and system for providing a magnetic junction usable in a magnetic memory are described. The magnetic junction includes first and second pinned layers, first and second nonmagnetic spacer layers, and a free layer. The pinned layers are nonmagnetic layer-free and self-pinned. In some aspects, the magnetic junction is configured to allow the free and second pinned layers to be switched between stable magnetic states when write currents are passed therethrough. The magnetic junction has greater than two stable states. In other aspects, the magnetic junction includes at least third and fourth spacer layers, a second free layer therebetween, and a third pinned layer having a pinned layer magnetic moment, being nonmagnetic layer-free, and being coupled to the second pinned layer. The magnetic junction is configured to allow the free layers to be switched between stable magnetic states when write currents are passed therethrough.
    Type: Application
    Filed: February 23, 2011
    Publication date: June 16, 2011
    Applicant: Grandis, Inc.
    Inventors: Dmytro Apalkov, Xueti Tang, Vladimir Nikitin, Alexander A.G. Driskill-Smith, Steven M. Watts, David Druist
  • Publication number: 20110031569
    Abstract: A method and system for providing a magnetic element and a magnetic memory utilizing the magnetic element are described. The magnetic element is used in a magnetic device that includes a contact electrically coupled to the magnetic element. The method and system include providing pinned, nonmagnetic spacer, and free layers. The free layer has an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy corresponding to a perpendicular anisotropy energy that is less than the out-of-plane demagnetization energy. The nonmagnetic spacer layer is between the pinned and free layers. The method and system also include providing a perpendicular capping layer adjoining the free layer and the contact. The perpendicular capping layer induces at least part of the perpendicular magnetic anisotropy in the free layer. The magnetic element is configured to allow the free layer to be switched between magnetic states when a write current is passed through the magnetic element.
    Type: Application
    Filed: May 7, 2010
    Publication date: February 10, 2011
    Applicant: GRANDIS, INC.
    Inventors: Steven M. Watts, Zhitao Diao, Xueti Tang
  • Publication number: 20110032644
    Abstract: A method and system for providing a magnetic element and a magnetic memory utilizing the magnetic element are described. The magnetic element is used in a magnetic device that includes a contact electrically coupled to the magnetic element. The method and system include providing pinned, nonmagnetic spacer, and free layers. The free layer has an out-of-plane demagnetization energy and a perpendicular magnetic anisotropy corresponding to a perpendicular anisotropy energy that is less than the out-of-plane demagnetization energy. The nonmagnetic spacer layer is between the pinned and free layers. The method and system also include providing a perpendicular capping layer adjoining the free layer and the contact. The perpendicular capping layer induces at least part of the perpendicular magnetic anisotropy in the free layer. The magnetic element is configured to allow the free layer to be switched between magnetic states when a write current is passed through the magnetic element.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 10, 2011
    Applicant: GRANDIS, INC.
    Inventors: Steven M. Watts, Zhitao Diao, Xueti Tang