Patents by Inventor Xuexi Zhang

Xuexi Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240243412
    Abstract: This application discloses a battery tray and a battery formation and capacity-grading device. The battery tray includes a fixed frame; and a fixed component located in the fixed frame, the fixed component including a first limiting assembly and a second limiting assembly, the first limiting assembly including at least two first limiting members which extend along a first direction respectively and are spaced apart along a second direction which intersects the first direction, the second limiting assembly being connected to the first limiting assembly and including at least two second limiting members which are disposed along the first direction and are connected with the first limiting members to form a limiting space for accommodating a battery cell, and the second limiting members being movably disposed along the first limiting members in the first direction.
    Type: Application
    Filed: March 29, 2024
    Publication date: July 18, 2024
    Applicant: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Jian CHEN, Kexin SUN, Chaokun WANG, Yiyang LIN, Xuexi ZHANG, Guoqiang HUANG, Changjian SHI, Zushuang XUE
  • Patent number: 8586194
    Abstract: Magnetic materials and methods exhibit large magnetic-field-induced deformation/strain (MFIS) through the magnetic-field-induced motion of crystallographic interfaces. The preferred materials are porous, polycrystalline composite structures of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. The materials are preferably made from magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga, formed into an open-pore foam, for example, by space-holder technique. Removal of constraints that interfere with MFIS has been accomplished by introducing pores with sizes similar to grains, resulting in MFIS values of 0.12% in polycrystalline Ni—Mn—Ga foams, close to the best commercial magnetostrictive materials. Further removal of constraints has been accomplished by introducing pores smaller than the grain size, dramatically increasing MFIS to 2.0-8.7%.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 19, 2013
    Assignees: Boise State University, Northwestern University
    Inventors: Peter Mullner, Markus Chmielus, Cassie Witherspoon, David C. Dunand, Xuexi Zhang, Yuttanant Boonyongmaneerat
  • Publication number: 20110064965
    Abstract: Magnetic materials and methods exhibit large magnetic-field-induced deformation/strain (MFIS) through the magnetic-field-induced motion of crystallographic interfaces. The preferred materials are porous, polycrystalline composite structures of nodes connected by struts wherein the struts may be monocrystalline or polycrystalline. The materials are preferably made from magnetic shape memory alloy, including polycrystalline Ni—Mn—Ga, formed into an open-pore foam, for example, by space-holder technique. Removal of constraints that interfere with MFIS has been accomplished by introducing pores with sizes similar to grains, resulting in MFIS values of 0.12% in polycrystalline Ni—Mn—Ga foams, close to the best commercial magnetostrictive materials. Further removal of constraints has been accomplished by introducing pores smaller than the grain size, dramatically increasing MFIS to 2.0-8.7%.
    Type: Application
    Filed: July 20, 2010
    Publication date: March 17, 2011
    Applicant: BOISE STATE UNIVERSITY
    Inventors: Peter Mullner, Markus Chmielus, Cassie Witherspoon, David C. Dunand, Xuexi Zhang, Yuttanant Boonyongmaneerat