Patents by Inventor Xuexin Ding

Xuexin Ding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11889330
    Abstract: Provided are methods and related devices for implementing disaster recovery. According to a method, in a case where a main Session Management Function (SMF) fails, a backup SMF sends a first request to a User Plane Function (UPF), wherein the first request carries a node identifier (Node ID) of the main SMF, a Node ID of the backup SMF, and a Common Session endpoint Identifier List (CSIDLIST) corresponding to the backup SMF; and the first request is used for notifying the UPF that the main SMF fails and a session or sessions in the CSIDLIST corresponding to the backup SMF is/are to be taken over by the backup SMF, so that the UPF subsequently interacts with the backup SMF for the session or sessions in the CSIDLIST corresponding to the backup SMF.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: January 30, 2024
    Assignee: ZTE CORPORATION
    Inventors: Ming Zhu, Lichang Hou, Xuexin Ding
  • Publication number: 20230299759
    Abstract: The disclosure provides a glitch removal circuit with low latency. The glitch removal circuit includes a first signal edge detector, a second signal edge detector, a latch, and a control signal generator. The first signal edge detector is activated according to the first control signal to detect the rising edge of the input signal to generate the first detection result. The second signal edge detector is activated according to the second control signal to detect the falling edge of the input signal to generate the second detection result. The latch sets the generated output signal according to the first detection result, and clears the generated output signal according to the second detection result. The control signal generator shields the glitch on the input signal to generate a processed signal, and generates a first control signal and a second control signal according to the processed signal.
    Type: Application
    Filed: July 28, 2022
    Publication date: September 21, 2023
    Applicant: Montage Electronics (Shanghai) Co., Ltd.
    Inventors: Li Quan, Xuexin Ding, Liang Zhang, Zhongyuan Chang, Yufei Gu, Lixin Jiang, Gang Yan, Zongjie Hu
  • Patent number: 11750184
    Abstract: The disclosure provides a glitch removal circuit with low latency. The glitch removal circuit includes a first signal edge detector, a second signal edge detector, a latch, and a control signal generator. The first signal edge detector is activated according to the first control signal to detect the rising edge of the input signal to generate the first detection result. The second signal edge detector is activated according to the second control signal to detect the falling edge of the input signal to generate the second detection result. The latch sets the generated output signal according to the first detection result, and clears the generated output signal according to the second detection result. The control signal generator shields the glitch on the input signal to generate a processed signal, and generates a first control signal and a second control signal according to the processed signal.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: September 5, 2023
    Assignee: Montage Electronics (Shanghai) Co., Ltd.
    Inventors: Li Quan, Xuexin Ding, Liang Zhang, Zhongyuan Chang, Yufei Gu, Lixin Jiang, Gang Yan, Zongjie Hu
  • Publication number: 20220022062
    Abstract: Provided are methods and related devices for implementing disaster recovery. According to a method, in a case where a main Session Management Function (SMF) fails, a backup SMF sends a first request to a User Plane Function (UPF), wherein the first request carries a node identifier (Node ID) of the main SMF, a Node ID of the backup SMF, and a Common Session endpoint Identifier List (CSIDLIST) corresponding to the backup SMF; and the first request is used for notifying the UPF that the main SMF fails and a session or sessions in the CSIDLIST corresponding to the backup SMF is/are to be taken over by the backup SMF, so that the UPF subsequently interacts with the backup SMF for the session or sessions in the CSIDLIST corresponding to the backup SMF.
    Type: Application
    Filed: November 18, 2019
    Publication date: January 20, 2022
    Inventors: Ming ZHU, Lichang HOU, Xuexin DING
  • Patent number: 10834504
    Abstract: A temperature detecting and controlling integration device for the micro speaker is provided. After the filter receives an input signal, the power amplifier adjusts the power amplification, and the multi-frequency detection signal is generated with the waveform generator. The extracted signal is generated to drive the micro speaker to emit a sound signal. Afterwards, the voltage signals are extracted at two ends of the coil and the temperature signal is obtained by converting, capturing, and integrating to pass the temperature value to the external device, and the temperature value of the non-linear temperature-controlling unit is analyzed to adjust the compensation gain in real time. The smoothly control of speaker temperature and stable playback of the sound signals is played that can be achieved.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: November 10, 2020
    Assignee: XIAMEN FOURIER ELECTRONICS CO., LTD.
    Inventors: Xuexin Ding, Weiji Liu, Jian Xu, Lin Zhang, Xiaolei Liu, Yingshun Jiang, Fangkang Shen
  • Publication number: 20200084542
    Abstract: A temperature detecting and controlling integration device for the micro speaker is provided. After the filter receives an input signal, the power amplifier adjusts the power amplification, and the multi-frequency detection signal is generated with the waveform generator. The extracted signal is generated to drive the micro speaker to emit a sound signal. Afterwards, the voltage signals are extracted at two ends of the coil and the temperature signal is obtained by converting, capturing, and integrating to pass the temperature value to the external device, and the temperature value of the non-linear temperature-controlling unit is analyzed to adjust the compensation gain in real time. The smoothly control of speaker temperature and stable playback of the sound signals is played that can be achieved.
    Type: Application
    Filed: November 13, 2019
    Publication date: March 12, 2020
    Inventors: Xuexin DING, Weiji LIU, Jian XU, Lin ZHANG, Xiaolei LIU, Yingshun JIANG, Fangkang SHEN
  • Patent number: 10531193
    Abstract: A temperature detecting and controlling integration device for the micro speaker is provided. After the filter receives an input signal, the power amplifier adjusts the power amplification, and the multi-frequency detection signal is generated with the waveform generator. The extracted signal is generated to drive the micro speaker to emit a sound signal. Afterwards, the voltage signals are extracted at two ends of the coil and the temperature signal is obtained by converting, capturing, and integrating to pass the temperature value to the external device, and the temperature value of the non-linear temperature-controlling unit is analyzed to adjust the compensation gain in real time. The smoothly control of speaker temperature and stable playback of the sound signals is played that can be achieved.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 7, 2020
    Assignee: XIAMEN FOURIER ELECTRONICS CO., LTD.
    Inventors: Xuexin Ding, Weiji Liu, Jian Xu, Lin Zhang, Xiaolei Liu, Yingshun Jiang, Fangkang Shen
  • Publication number: 20190132675
    Abstract: A temperature detecting and controlling integration device for the micro speaker is provdied. After the filter receives an input signal, the power amplifier adjusts the power amplification, and the multi-frequency detection signal is generated with the waveform generator. The extracted signal is generated to drive the micro speaker to emit a sound signal. Afterwards, the voltage signals are extracted at two ends of the coil and the temperature signal is obtained by converting, capturing, and integrating to pass the temperature value to the external device, and the temperature value of the non-linear temperature-controlling unit is analyzed to adjust the compensation gain in real time. The smoothly control of speaker temperature and stable playback of the sound signals is played that can be achieved.
    Type: Application
    Filed: August 31, 2018
    Publication date: May 2, 2019
    Inventors: Xuexin DING, Weiji LIU, Jian XU, Lin ZHANG, Xiaolei LIU, Yingshun JIANG, Fangkang SHEN
  • Patent number: 8378746
    Abstract: A voltage-mode line driving circuit is provided. The voltage-mode line driving circuit includes a driving circuit, the driving circuit receiving, as an input signal, a feedback signal, and outputting an output signal. The voltage-mode line driving signal also includes an adaptive tuning circuit coupled to the driving circuit, the adaptive tuning circuit receiving as input signals the feedback signal and the output signal and adaptively outputting a modifying signal to the driving circuit which modifies the feedback signal.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: February 19, 2013
    Assignee: Integrated Device Technology, inc
    Inventors: Xuexin Ding, Zhongyuan Chang
  • Publication number: 20100007641
    Abstract: A voltage-mode line driving circuit is provided. The voltage-mode line driving circuit includes a driving circuit, the driving circuit receiving, as an input signal, a feedback signal, and outputting an output signal. The voltage-mode line driving signal also includes an adaptive tuning circuit coupled to the driving circuit, the adaptive tuning circuit receiving as input signals the feedback signal and the output signal and adaptively outputting a modifying signal to the driving circuit which modifies the feedback signal.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 14, 2010
    Inventors: Xuexin Ding, Zhongyuan Chang
  • Patent number: 7436224
    Abstract: The methods and systems presented herein provide an improved means of correcting the variation of Voltage Output Differential (VOD) in differential drivers. In some embodiments, a high-precision reference voltage is generated not only based on a desired VOD, but also by monitoring the Voltage Common Mode (VCM) in a differential driver. In some embodiments, the VOD is then compared with the high-precision reference voltage to correct the output current. The result is a low-variation output voltage.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: October 14, 2008
    Assignee: Integrated Device Technology, Inc.
    Inventors: Yanbo Wang, Hongquan Wang, Xuexin Ding
  • Patent number: 7368938
    Abstract: An input termination circuit includes a first and a second resistor each having a terminal respectively coupled to a first and a second input terminal of the input termination circuit, a first and a second transistor coupled in series between the first resistor and the second resistor, and a third transistor having two terminals respectively coupled to the control circuit and a node between the first and the second transistor. The gate of the third transistor is coupled to ground. The gates of the first and the second transistor are coupled to a control circuit that is adapted to provide a control signal to turn the first and the second transistor on or off.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: May 6, 2008
    Assignee: Integrated Device Technology, Inc.
    Inventors: Xuexin Ding, Hongquan Wang, Weifeng Zhang
  • Publication number: 20080024176
    Abstract: The methods and systems presented herein provide an improved means of correcting the variation of Voltage Output Differential (VOD) in differential drivers. In some embodiments, a high-precision reference voltage is generated not only based on a desired VOD, but also by monitoring the Voltage Common Mode (VCM) in a differential driver. In some embodiments, the VOD is then compared with the high-precision reference voltage to correct the output current. The result is a low-variation output voltage.
    Type: Application
    Filed: July 27, 2006
    Publication date: January 31, 2008
    Inventors: Yanbo Wang, Hongquan Wang, Xuexin Ding
  • Publication number: 20070290713
    Abstract: An input termination circuit includes a first and a second resistor each having a terminal respectively coupled to a first and a second input terminal of the input termination circuit, a first and a second transistor coupled in series between the first resistor and the second resistor, and a third transistor having two terminals respectively coupled to the control circuit and a node between the first and the second transistor. The gate of the third transistor is coupled to ground. The gates of the first and the second transistor are coupled to a control circuit that is adapted to provide a control signal to turn the first and the second transistor on or off.
    Type: Application
    Filed: June 15, 2006
    Publication date: December 20, 2007
    Inventors: Xuexin Ding, Hongquan Wang, Weifeng Zhang