Patents by Inventor Xueying Kang

Xueying Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11573119
    Abstract: A method for dynamically determining a mass of a vehicle including a propulsion system coupled to a drive wheel is described, and includes monitoring vehicle operating conditions, executing an event-based estimation method based upon the vehicle operating conditions to determine a first vehicle mass state, and executing a recursive estimation method based upon the vehicle operating conditions to determine a second vehicle mass state. A final vehicle mass is determined based upon the first and second vehicle mass states.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: February 7, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Xiaoyu Huang, Xueying Kang, Hualin Tan
  • Patent number: 11529948
    Abstract: A vehicle, and a method and system for operating the vehicle. The system includes a processor. The processor receives a driver input at the vehicle, determines a current lateral force on a tire of the vehicle for the driver input, determines a desired yaw rate and lateral velocity for the vehicle based on the current lateral force on the tire that operates the vehicle at a maximum yaw moment, and operates the vehicle at the desired yaw rate and lateral velocity.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: December 20, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Seyedeh Asal Nahidi, SeyedAlireza Kasaiezadeh Mahabadi, James H. Holbrook, John R. Yost, Hualin Tan, Xueying Kang, Bakhtiar B. Litkouhi
  • Patent number: 11046323
    Abstract: A method for estimation of a vehicle tire force includes: receiving, by a controller of a vehicle, a measured vehicle acceleration of the vehicle; receiving, by the controller, a measured wheel speed and a measured yaw rate of the vehicle; forming, by the controller, inertia matrices based on an inertia of rotating components of the vehicle; calculating torques at corners of the vehicle using the inertia matrices; estimating tire forces of the vehicle based on the measured vehicle acceleration, the measured wheel speed, and the inertia matrices; and controlling, by the controller, the vehicle, based on the plurality of estimated longitudinal and lateral tire forces.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: June 29, 2021
    Assignees: GM Global Technology Operations LLC, University of Waterloo
    Inventors: Ehsan Hashemi, SeyedAlireza Kasaiezadeh Mahabadi, Amir Khajepour, Xueying Kang, Jin-Jae Chen, Hualin Tan, James H. Holbrook, Bakhtiar B. Litkouhi
  • Publication number: 20200339104
    Abstract: A vehicle, and a method and system for operating the vehicle. The system includes a processor. The processor receives a driver input at the vehicle, determines a current lateral force on a tire of the vehicle for the driver input, determines a desired yaw rate and lateral velocity for the vehicle based on the current lateral force on the tire that operates the vehicle at a maximum yaw moment, and operates the vehicle at the desired yaw rate and lateral velocity.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: Seyedeh Asal Nahidi, SeyedAlireza Kasaiezadeh Mahabadi, James H. Holbrook, John R. Yost, Hualin Tan, Xueying Kang, Bakhtiar B. Litkouhi
  • Publication number: 20200317198
    Abstract: A method for estimation of a vehicle tire force includes: receiving, by a controller of a vehicle, a measured vehicle acceleration of the vehicle; receiving, by the controller, a measured wheel speed and a measured yaw rate of the vehicle; forming, by the controller, inertia matrices based on an inertia of rotating components of the vehicle; calculating torques at corners of the vehicle using the inertia matrices; estimating tire forces of the vehicle based on the measured vehicle acceleration, the measured wheel speed, and the inertia matrices; and controlling, by the controller, the vehicle, based on the plurality of estimated longitudinal and lateral tire forces.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 8, 2020
    Applicants: GM Global Technology Operations LLC, University of Waterloo
    Inventors: Ehsan Hashemi, SeyedAlireza Kasaiezadeh Mahabadi, Amir Khajepour, Xueying Kang, Jin-Jae Chen, Hualin Tan, James H. Holbrook, Bakhtiar B. Litkouhi
  • Publication number: 20200232842
    Abstract: A method for dynamically determining a mass of a vehicle including a propulsion system coupled to a drive wheel is described, and includes monitoring vehicle operating conditions, executing an event-based estimation method based upon the vehicle operating conditions to determine a first vehicle mass state, and executing a recursive estimation method based upon the vehicle operating conditions to determine a second vehicle mass state. A final vehicle mass is determined based upon the first and second vehicle mass states.
    Type: Application
    Filed: January 17, 2019
    Publication date: July 23, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Xiaoyu Huang, Xueying Kang, Hualin Tan
  • Publication number: 20190256094
    Abstract: A vehicle, system and a method of driving a performance vehicle. The system includes a sensor for detecting a value of driver input to the vehicle, and a processor. The processor is configured to compare the value of the driver input to a threshold value for the driver input, switch to a performance mode operation for the vehicle when the value of the driver input is greater than the threshold value, generate a command at the vehicle based on the value of the driver input using a performance model of the vehicle activated in the performance mode, and activate a performance actuator of the vehicle to generate a dynamic parameter at the vehicle from the command.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Inventors: SeyedAlireza Kasaiezadeh Mahabadi, James H. Holbrook, Hualin Tan, John R. Yost, Xueying Kang, Bakhtiar B. Litkouhi