Patents by Inventor Xueyu Liu

Xueyu Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250132126
    Abstract: A method for doping a two-dimensional material based on cluster ion implantation, including selecting a two-dimensional material sample to place same on a substrate; determining the selected implantation parameters by Monte Carlo particle tracing algorithm on the two-dimensional material sample; replacing the two-dimensional material sample, and placing a two-dimensional material thin film, wherein the thickness of the two-dimensional material thin film is ?10 nm; selecting a determined implantation parameter to form a cluster beam and acting on a two-dimensional material thin film; changing the implantation parameters to form different cluster beams and acting on the two-dimensional material thin film; performing annealing on the two-dimensional material thin film implanted with cluster ions to repair the damage caused by implantation.
    Type: Application
    Filed: May 6, 2024
    Publication date: April 24, 2025
    Inventors: Fengqi SONG, Minhao ZHANG, Xueyu LIU, Sichen TANG, Ning CHEN
  • Publication number: 20240225450
    Abstract: A method and a device of measuring a tissue element, and a wearable apparatus. The method includes: irradiating a measurement region with incident light having a single predetermined wavelength, where the incident light passes through the measurement region to form exit light exited from at least one exit position; obtaining a light intensity value corresponding to the exit light acquired by M photosensitive surfaces so as to obtain T output light intensities, where each output light intensity is obtained by processing the light intensity value of the exit light acquired by one or more photosensitive surfaces, and each photosensitive surface is used to acquire the light intensity value of the exit light exited from the exit position within a predetermined anti-jitter range corresponding to the photosensitive surface, 1?T?M; and determining a concentration of a detected tissue element according to at least one output light intensity corresponding to the predetermined wavelength.
    Type: Application
    Filed: December 31, 2021
    Publication date: July 11, 2024
    Inventors: Kexin Xu, Tongshuai Han, Mingfei Yao, Xueyu Liu
  • Publication number: 20240225553
    Abstract: A method and a device of measuring tissue element and a wearable apparatus are provided. The method includes: irradiating a measurement region with incident light having multiple predetermined wavelengths, where each beam of the incident light passes through the measurement region to form exit light exited from at least one exit position; obtaining a light intensity value corresponding to each beam of the exit light acquired by M photosensitive surfaces, to obtain T output light intensities each obtained by processing the light intensity value of the exit light acquired by one or more photosensitive surfaces, and each photosensitive surface is used to acquire the light intensity value of the exit light exited from the exit position within a predetermined anti-jitter range corresponding to the photosensitive surface, 1?T?M; and determining a concentration of a measured tissue element according to at least one output light intensity corresponding to the predetermined wavelengths.
    Type: Application
    Filed: December 31, 2021
    Publication date: July 11, 2024
    Inventors: Kexin Xu, Tongshuai Han, Di Sun, Xueyu Liu
  • Publication number: 20240130687
    Abstract: A method and a device of measuring tissue element and a wearable apparatus are provided. The method includes: irradiating a measurement region with incident light having multiple predetermined wavelengths, where each beam of the incident light passes through the measurement region to form exit light exited from at least one exit position; obtaining a light intensity value corresponding to each beam of the exit light acquired by M photosensitive surfaces, to obtain T output light intensities each obtained by processing the light intensity value of the exit light acquired by one or more photosensitive surfaces, and each photosensitive surface is used to acquire the light intensity value of the exit light exited from the exit position within a predetermined anti-jitter range corresponding to the photosensitive surface, 1?T?M; and determining a concentration of a measured tissue element according to at least one output light intensity corresponding to the predetermined wavelengths.
    Type: Application
    Filed: December 31, 2021
    Publication date: April 25, 2024
    Inventors: Kexin Xu, Tongshuai Han, Di Sun, Xueyu Liu
  • Publication number: 20240130620
    Abstract: A method and a device of measuring a tissue element, and a wearable apparatus. The method includes: irradiating a measurement region with incident light having a single predetermined wavelength, where the incident light passes through the measurement region to form exit light exited from at least one exit position; obtaining a light intensity value corresponding to the exit light acquired by M photosensitive surfaces so as to obtain T output light intensities, where each output light intensity is obtained by processing the light intensity value of the exit light acquired by one or more photosensitive surfaces, and each photosensitive surface is used to acquire the light intensity value of the exit light exited from the exit position within a predetermined anti-jitter range corresponding to the photosensitive surface, 1?T?M; and determining a concentration of a detected tissue element according to at least one output light intensity corresponding to the predetermined wavelength.
    Type: Application
    Filed: December 31, 2021
    Publication date: April 25, 2024
    Inventors: Kexin Xu, Tongshuai Han, Mingfei Yao, Xueyu Liu
  • Publication number: 20240130676
    Abstract: A method and a device of detecting a living tissue element and a wearable apparatus are provided. The method includes: irradiating a detection region with incident light, where the incident light passes through the detection region to form exit light exited from at least one exit position; obtaining a light intensity value corresponding to each beam of the exit light acquired by M photosensitive surfaces, to obtain T output light intensities, where each output light intensity is obtained by processing the light intensity value of the exit light acquired by one or more photosensitive surfaces, and each photosensitive surface is used to acquire the light intensity value of the exit light exited from the exit position within a predetermined anti-jitter range corresponding to the photosensitive surface, 1?T?M; and determining a concentration of at least one detected tissue element according to at least one output light intensity.
    Type: Application
    Filed: December 31, 2021
    Publication date: April 25, 2024
    Inventors: Kexin Xu, Tongshuai Han, Di Sun, Xueyu Liu
  • Publication number: 20240122506
    Abstract: A method and a device of measuring a tissue element, and a wearable apparatus. The method includes: obtaining, in response to a reproducibility of a controllable measurement condition being met, an output light intensity corresponding to exit light having at least one predetermined wavelength, where the output light intensity is acquired by a measurement probe, the measurement probe is provided on a device of measuring a tissue element, and the device of measuring a tissue element has a signal-to-noise ratio level for distinguishing an expected change in a concentration of a tissue element; and processing at least one output light intensity corresponding to the at least one predetermined wavelength based on an interference suppression method, so as to determine a concentration of a detected tissue element.
    Type: Application
    Filed: December 31, 2021
    Publication date: April 18, 2024
    Inventors: Kexin Xu, Tongshuai Han, Di Sun, Xueyu Liu