Patents by Inventor Xuming Wang
Xuming Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200355264Abstract: A lockup disengagement control device for an automatic transmission including a torque converter including a lockup clutch, and a lockup control section, the lockup disengagement control device includes: when a brake is operated from a brake OFF to a brake ON during a coast traveling in an engagement state of the lockup clutch, the lockup control section being configured to sense an initial deceleration by the brake ON operation, and to set a lockup release vehicle speed to be higher as an absolute value of the initial deceleration is greater, and when a vehicle speed is sensed to be equal to or smaller than the set lockup release vehicle speed in a middle of a brake deceleration scene by the brake ON operation, the lockup control section being configured to disengage the lockup clutch.Type: ApplicationFiled: January 17, 2019Publication date: November 12, 2020Applicants: JATCO Ltd, NISSAN MOTOR CO., LTD.Inventors: Koji SAITO, Akira NAKAINKYO, Naoyasu IKEDA, Xuming WANG
-
Publication number: 20200119364Abstract: A cathode (100) for use in a lithium-air battery can include a polymer binder (150) having a conductive material (120), phyllosilicate nanoparticles (110), a lithium salt (130), and a metal catalyst (140) distributed in the polymer binder (150). The cathode (100) can be porous to allow oxygen to diffuse from surrounding air into the cathode (100). A lithium-air battery can include a lithium metal anode, a solid electrolyte in contact with the lithium metal anode, and a cathode (100) in contact with the solid electrolyte. The cathode (100) can have a polymer binder (150) as a support matrix. The polymer binder (150) can be porous to allow oxygen to diffuse from surrounding air into the cathode (100). The cathode (100) can include the polymer binder (150), a conductive material (120), phyllosilicate nanoparticles (110), a lithium salt (130), and a metal catalyst (140) distributed in the polymer binder (150).Type: ApplicationFiled: June 21, 2018Publication date: April 16, 2020Inventors: Jan Miller, Xuming Wang, Jin Lin, Yue Lin
-
Publication number: 20190097261Abstract: A composite solid electrolyte (100) for lithium batteries can include a solid polymer (110), phyllosilicate nanoparticles (120) distributed in the solid polymer, and a lithium salt (130) distributed in the solid polymer. In one example, the composite solid electrolyte can be used in a solid state lithium battery cell (400) made up of composite solid electrolyte, an anode (420) containing lithium in contact with a first surface of the composite solid electrolyte, and a cathode (430) in contact with a second surface of the composite solid electrolyte.Type: ApplicationFiled: March 16, 2017Publication date: March 28, 2019Inventors: Jan D. Miller, Xuming Wang, Yue Lin
-
Patent number: 9650305Abstract: Compositions and methods for reducing the impact of hard water on gypsum board foaming are provided. The compositions include adding a foam to water and a calcined slurry. The foam includes water, dispersed air and a surfactant. Surfactants for use include a hydrophobic portion having an alkyl chain length distribution of about 20% to about 60% C8 chains; about 20% to about 60% C10 chains; about 14% to about 36% C12 chains and about 2% to about 20% C14 chains and also having a hydrophilic portion having about 0.2 to 3.0 ethoxy groups.Type: GrantFiled: December 28, 2007Date of Patent: May 16, 2017Assignee: UNITED STATES GYPSUM COMPANYInventors: Xuming Wang, Steven W. Sucech
-
Patent number: 8871004Abstract: A method for making an agglomerate of an ore is disclosed. The method comprises contacting the ore with an acid solution and a stucco binder. The stucco binder may include calcium sulfate hemihydrate. The ore agglomerate may include ore, acid solution, and stucco-derived gypsum.Type: GrantFiled: August 2, 2010Date of Patent: October 28, 2014Assignee: University of Utah Research FoundationInventors: Jan D. Miller, Xuming Wang, Chen-Luh Lin, Phanindra Kodali
-
Patent number: 8568544Abstract: A fibrous mat-faced cementitious article comprising (a) a cementitious core, and (b) a first fibrous mat comprising polymer or mineral fibers and a hydrophobic finish on at least one surface thereof, wherein the hydrophobic finish is in contact with the cementitious core, and a method of preparing a fibrous mat-faced cementitious article, as well as a method of preparing a water-resistant cementitious article comprising (a) preparing an aqueous siloxane dispersion, wherein the dispersion comprises about 4 wt. % to about 8 wt. % siloxane, (b) combining the siloxane dispersion with a cementitious mixture to provide a cementitious slurry, (c) depositing the cementitious slurry onto a substrate, and (d) allowing the cementitious slurry to harden, thereby providing a cementitious article.Type: GrantFiled: October 28, 2011Date of Patent: October 29, 2013Assignee: United States Gypsum CompanyInventors: Dick C. Engbrecht, Qingxia Liu, Michael P. Shake, Xuming Wang, David Paul Miller, Michael L. Bolind, Paul Reed, Donald L. Roelfs, Rafael Bury
-
Patent number: 8501074Abstract: Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco, magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.Type: GrantFiled: April 21, 2011Date of Patent: August 6, 2013Assignee: United States Gypsum CompanyInventors: Xuming Wang, Qingxin Liu, Paul Reed, Qiang Yu
-
Publication number: 20120128554Abstract: A method for making an agglomerate of an ore is disclosed. The method comprises contacting the ore with an acid solution and a stucco binder. The stucco binder may include calcium sulfate hemihydrate. The ore agglomerate may include ore, acid solution, and stucco-derived gypsum.Type: ApplicationFiled: August 2, 2010Publication date: May 24, 2012Applicant: UNIVERSITY OF UTAH RESEARCH FOUNDATIONInventors: Jan D. Miller, Xuming Wang, Chen-Luh Lin, Phanindra Kodali
-
Patent number: 8133600Abstract: Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco, magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.Type: GrantFiled: September 22, 2010Date of Patent: March 13, 2012Assignee: United States Gypsum CompanyInventors: Xuming Wang, Qingxia Liu, Paul Reed, Qiang Yu
-
Publication number: 20120040168Abstract: A fibrous mat-faced cementitious article comprising (a) a cementitious core, and (b) a first fibrous mat comprising polymer or mineral fibers and a hydrophobic finish on at least one surface thereof, wherein the hydrophobic finish is in contact with the cementitious core, and a method of preparing a fibrous mat-faced cementitious article, as well as a method of preparing a water-resistant cementitious article comprising (a) preparing an aqueous siloxane dispersion, wherein the dispersion comprises about 4 wt. % to about 8 wt. % siloxane, (b) combining the siloxane dispersion with a cementitious mixture to provide a cementitious slurry, (c) depositing the cementitious slurry onto a substrate, and (d) allowing the cementitious slurry to harden, thereby providing a cementitious article.Type: ApplicationFiled: October 28, 2011Publication date: February 16, 2012Applicant: UNITED STATES GYPSUM COMPANYInventors: Dick C. ENGBRECHT, Qingxia LIU, Michael P. SHAKE, Xuming WANG, David Paul MILLER, Michael L. BOLIND, Paul REED, Donald L. ROELFS, Rafael BURY
-
Patent number: 8070895Abstract: A fibrous mat-faced cementitious article comprising (a) a cementitious core, and (b) a first fibrous mat comprising polymer or mineral fibers and a hydrophobic finish on at least one surface thereof, wherein the hydrophobic finish is in contact with the cementitious core, and a method of preparing a fibrous mat-faced cementitious article, as well as a method of preparing a water-resistant cementitious article comprising (a) preparing an aqueous siloxane dispersion, wherein the dispersion comprises about 4 wt. % to about 8 wt. % siloxane, (b) combining the siloxane dispersion with a cementitious mixture to provide a cementitious slurry, (c) depositing the cementitious slurry onto a substrate, and (d) allowing the cementitious slurry to harden, thereby providing a cementitious article.Type: GrantFiled: April 20, 2007Date of Patent: December 6, 2011Assignee: United States Gypsum CompanyInventors: Dick C. Engbrecht, Qingxia Liu, Michael P. Shake, Xuming Wang, David Paul Miller, Michael L. Bolind, Paul Reed, Donald L. Roelfs, Rafael Bury
-
Publication number: 20110196090Abstract: Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco, magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.Type: ApplicationFiled: April 21, 2011Publication date: August 11, 2011Inventors: Xuming Wang, Qingxin Liu, Paul Reed, Qiang Yu
-
Publication number: 20110009564Abstract: Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco, magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.Type: ApplicationFiled: September 22, 2010Publication date: January 13, 2011Inventors: Xuming Wang, Qingxia Liu, Paul Reed, Qiang Yu
-
Patent number: 7815730Abstract: Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco, magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.Type: GrantFiled: June 4, 2009Date of Patent: October 19, 2010Assignee: United States Gypsum CompanyInventors: Xuming Wang, Qingxia Liu, Paul Reed, Qiang Yu
-
Patent number: 7811685Abstract: Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco, magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.Type: GrantFiled: November 12, 2009Date of Patent: October 12, 2010Assignee: United States Gypsum CompanyInventors: Xuming Wang, Qingxia Liu, Paul Reed, Qiang Yu
-
Patent number: 7803226Abstract: Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco, magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.Type: GrantFiled: July 29, 2005Date of Patent: September 28, 2010Assignee: United States Gypsum CompanyInventors: Xuming Wang, Qingxia Liu, Paul Reed, Qiang Yu
-
Publication number: 20100055477Abstract: Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco, magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.Type: ApplicationFiled: November 12, 2009Publication date: March 4, 2010Inventors: Xuming Wang, Qingxia Liu, Paul Reed, Qiang Yu
-
Publication number: 20090239087Abstract: Polymerization of siloxane is improved using a gypsum-based slurry that includes stucco, Class C fly ash, magnesium oxide and an emulsion of siloxane and water. This slurry is used in a method of making water-resistant gypsum articles that includes making an emulsion of siloxane and water, then combining the slurry with a dry mixture of stucco, magnesium oxide and Class C fly ash. The slurry is then shaped as desired and the stucco is allowed to set and the siloxane polymerizes. The resulting product is useful for making a water-resistant gypsum panel having a core that includes interwoven matrices of calcium sulfate dihydrate crystals and a silicone resin, where the interwoven matrices have dispersed throughout them a catalyst comprising magnesium oxide and components from a Class C fly ash.Type: ApplicationFiled: June 4, 2009Publication date: September 24, 2009Inventors: Xuming Wang, Qingxia Liu, Paul Reed, Qiang Yu
-
Publication number: 20090169864Abstract: Compositions and methods for reducing the impact of hard water on gypsum board foaming are provided. The compositions include adding a foam to water and a calcined slurry. The foam includes water, dispersed air and a surfactant. Surfactants for use include a hydrophobic portion having an alkyl chain length distribution of about 20% to about 60% C8 chains; about 20% to about 60% C10 chains; about 14% to about 36% C12 chains and about 2% to about 20% C14 chains and also having a hydrophilic portion having about 0.2 to 3.0 ethoxy groups.Type: ApplicationFiled: December 28, 2007Publication date: July 2, 2009Inventors: Xuming Wang, Steven W. Sucech
-
Patent number: 7517509Abstract: The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material.Type: GrantFiled: March 30, 2005Date of Patent: April 14, 2009Assignee: University of Utah Research FoundationInventors: J. D. Miller, Xuming Wang, Minhua Li