Patents by Inventor Xuming Wu

Xuming Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210194588
    Abstract: A data transmission method includes receiving, by an optical line terminal (OLT) from an optical network unit (ONU), uplink burst data that includes a synchronization data block and a payload, where the synchronization data block includes first synchronization data, wherein the first synchronization data includes a first preamble and an ONU identifier, and a first bandwidth occupied by the first frequency distribution of the first synchronization data is narrower than a second bandwidth occupied by the second frequency distribution of the payload, and obtaining, by the OLT from the first synchronization data, the ONU identifier.
    Type: Application
    Filed: March 9, 2021
    Publication date: June 24, 2021
    Inventors: Xuming Wu, Shengping Li, Lei Zhou, Xiaofei Zeng
  • Patent number: 10939190
    Abstract: The present invention discloses a passive optical network communications method: reporting, by an optical network unit, ONU, a calibration record of the ONU, where the calibration record includes an ID of a calibrated wavelength channel; sending a first message to the ONU when the OLT determines, according to the calibration record, that a target wavelength channel ID corresponding to a target wavelength channel to which the ONU needs to switch is not in the calibration record, where the first message includes a forced wavelength switching flag; and instructing the ONU to switch to the calibrated target wavelength channel. In this way, the ONU can implement wavelength switching quickly after calibrating a new wavelength channel so as to perform data communication over the calibrated new wavelength channel.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: March 2, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Bo Gao, Dekun Liu, Xuming Wu, Jianhe Gao
  • Publication number: 20200336209
    Abstract: An apparatus includes a processor configured to determine a set of first lanes associated with a PON, select a subset of second lanes from the set, and perform lane bonding by bonding the subset to an ONU. A transmitter coupled to the processor is configured to transmit a lane bonding assignment to the ONU. An ONU includes a plurality of receivers configured to receive a first message comprising an announcement indicating an OLT lane capability. A processor coupled to the receivers is configured to process the first message and generate a second message in response to the first message, wherein the second message comprises a report indicating an ONU lane capability and prompting lane bonding in a PON. A plurality of transmitters coupled to the processor is configured to transmit the second message to the OLT.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Jianhe Gao, Yuanqiu Luo, Xuming Wu
  • Patent number: 10805007
    Abstract: Embodiments of the present invention disclose an EPON communication method, an ONU, and an OLT. The method includes: generating, by an ONU, a first control frame, where the first control frame includes a first data field, and the first data field includes a bandwidth requirement of the at least one LLID; and sending, by the ONU, the first control frame to an OLT. In addition, the OLT generates a second control frame, where the second control frame includes a second data field, and the second data field includes grant information of the at least one LLID; and the OLT sends the second control frame to the ONU. In the embodiments of the present invention, the first control frame may carry bandwidth requirements of a plurality of LLIDs, so that one first control frame can be used to report bandwidth requirements of a plurality of LLIDs.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: October 13, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Zhenping Wang, Bo Gao, Shiwei Nie, Lei Jing, Xuming Wu
  • Patent number: 10763988
    Abstract: An apparatus comprises: a processor configured to: select a first channel from among a plurality of channels in a network, and generate a first message assigning a first grant corresponding to the first channel; a transmitter coupled to the processor and configured to transmit the first message; and a receiver coupled to the processor and configured to receive a second message on the first channel and in response to the first message. A method comprises: selecting a first channel from among a plurality of channels in a network; generating a first message assigning a first grant corresponding to the first channel; transmitting the first message; and receiving a second message on the first channel in response to the first message.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: September 1, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xuming Wu, Yuanqiu Luo, Jianhe Gao
  • Patent number: 10700783
    Abstract: An apparatus includes a processor configured to determine a set of first lanes associated with a PON, select a subset of second lanes from the set, and perform lane bonding by bonding the subset to an ONU. A transmitter coupled to the processor is configured to transmit a lane bonding assignment to the ONU. An ONU includes a plurality of receivers configured to receive a first message comprising an announcement indicating an OLT lane capability. A processor coupled to the receivers is configured to process the first message and generate a second message in response to the first message, wherein the second message comprises a report indicating an ONU lane capability and prompting lane bonding in a PON. A plurality of transmitters coupled to the processor is configured to transmit the second message to the OLT.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: June 30, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Jianhe Gao, Yuanqiu Luo, Xuming Wu
  • Patent number: 10608776
    Abstract: An apparatus comprises: a processor configured to: select a first channel from among a plurality of channels in a network, and generate a first message assigning a first grant corresponding to the first channel; a transmitter coupled to the processor and configured to transmit the first message; and a receiver coupled to the processor and configured to receive a second message on the first channel and in response to the first message. A method comprises: selecting a first channel from among a plurality of channels in a network; generating a first message assigning a first grant corresponding to the first channel; transmitting the first message; and receiving a second message on the first channel in response to the first message.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 31, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xuming Wu, Yuanqiu Luo, Jianhe Gao
  • Patent number: 10601515
    Abstract: Embodiments of the present invention disclose a method for switching a modulation format of a passive optical network, an apparatus, and a system. The method includes: separately delivering, by an OLT, a registration message to an optical network unit in all supported upstream modulation formats and/or downstream modulation formats; receiving, by the OLT, a first message reported by the optical network unit, where the first message includes an upstream modulation format capability and/or a downstream modulation format capability; and determining, by the OLT, a target upstream modulation format and/or a target downstream modulation format of the optical network unit according to the first message, and instructing the optical network unit to switch to the target upstream modulation format and/or the target downstream modulation format. Therefore, in a PON system that supports a plurality of modulation formats, a modulation format reporting capability of the ONU is improved.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: March 24, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Shengping Li, Zhicheng Ye, Xuming Wu
  • Patent number: 10506313
    Abstract: Embodiments relate to the field of PON technologies, and provide a method, apparatus, and system. The method includes: receiving capability information that is sent by an ONU by using a first preamble; calculating a tap coefficient based on the received first preamble if the capability information indicates that the ONU has an equalization capability; sending the tap coefficient to the ONU, where the ONU updates a tap coefficient of a first equalizer in the ONU based on the received tap coefficient, and when subsequently sending upstream data, sends, by using a second preamble, the upstream data equalized by using the first equalizer, and a length of the second preamble is less than a length of the first preamble; receiving the upstream data; and equalizing the received upstream data based on the second preamble by using a second equalizer in an OLT. In this way, upstream overheads can be reduced.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: December 10, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jianyu Zheng, Shengping Li, Xuming Wu
  • Patent number: 10439724
    Abstract: A passive optical network (PON) includes a first optical line terminal (OLT), a second OLT, and an optical network unit (ONU). The first OLT sends an equalization delay change message to the ONU, wherein the equalization delay change message includes an equalization delay, an upstream channel ID and a downstream channel ID corresponding to the equalization delay. The ONU receives the equalization delay change message. When the ONU tunes from the first OLT to the second OLT, the ONU obtains the equalization delay for upstream transmission according to the upstream channel ID and the downstream channel ID.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: October 8, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xuming Wu, Yuanqiu Luo, Dekun Liu, Jianhe Gao
  • Publication number: 20190273634
    Abstract: A passive optical network communication method, including receiving an Ethernet packet carrying an optical network unit identifier, determining a correspondence between the optical network unit identifier and an optical network unit type according to the optical network unit identifier, determining that an optical network unit that receives the Ethernet packet is a first type of optical network unit, where the optical network unit type includes the first and second type of optical network unit, and a packet receiving rate of the first type is different from that of the second type, determining a correspondence between the optical network unit type and a channel according to the first type, determining a channel corresponding to the first type, encapsulating the Ethernet packet into a gigabit-capable passive optical network encapsulation method (GEM) frame, and sending the GEM frame to the first type of optical network unit using the determined channel.
    Type: Application
    Filed: May 16, 2019
    Publication date: September 5, 2019
    Inventors: Guikai Peng, Huafeng Lin, Shiwei Nie, Xuming Wu, Liming Fang, Yinghua Dong
  • Publication number: 20190207680
    Abstract: Embodiments of the present invention disclose an EPON communication method, an ONU, and an OLT. The method includes: generating, by an ONU, a first control frame, where the first control frame includes a first data field, and the first data field includes a bandwidth requirement of the at least one LLID; and sending, by the ONU, the first control frame to an OLT. In addition, the OLT generates a second control frame, where the second control frame includes a second data field, and the second data field includes grant information of the at least one LLID; and the OLT sends the second control frame to the ONU. In the embodiments of the present invention, the first control frame may carry bandwidth requirements of a plurality of LLIDs, so that one first control frame can be used to report bandwidth requirements of a plurality of LLIDs.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Inventors: Zhenping Wang, Bo Gao, Shiwei Nie, Lei Jing, Xuming Wu
  • Publication number: 20190157832
    Abstract: Embodiments of the present invention disclose a wavelength shift control method and system, to implement stable control over temperature of a laser to ensure that a transmit wavelength of the laser is stable in a burst work process of a transmitter and is not shifted to avoid impact on normal work of a PON system with a plurality of wavelength paths. The method includes: generating a burst control signal; sending the burst control signal to a controller; and controlling switch statuses of a laser and a heater according to the received burst control signal, where when a switch of the laser is in an on state, a switch of the heater is in an off state, and when a switch of the laser is in an off state, a switch of the heater is in an on state, so that a temperature of the laser remains stable.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Xuming Wu, Huafeng Lin, Liming Fang
  • Publication number: 20190116404
    Abstract: Embodiments relate to the field of PON technologies, and provide a method, apparatus, and system. The method includes: receiving capability information that is sent by an ONU by using a first preamble; calculating a tap coefficient based on the received first preamble if the capability information indicates that the ONU has an equalization capability; sending the tap coefficient to the ONU, where the ONU updates a tap coefficient of a first equalizer in the ONU based on the received tap coefficient, and when subsequently sending upstream data, sends, by using a second preamble, the upstream data equalized by using the first equalizer, and a length of the second preamble is less than a length of the first preamble; receiving the upstream data; and equalizing the received upstream data based on the second preamble by using a second equalizer in an OLT. In this way, upstream overheads can be reduced.
    Type: Application
    Filed: December 13, 2018
    Publication date: April 18, 2019
    Inventors: Jianyu ZHENG, Shengping LI, Xuming WU
  • Publication number: 20190089477
    Abstract: An apparatus comprises: a processor configured to: select a first channel from among a plurality of channels in a network, and generate a first message assigning a first grant corresponding to the first channel; a transmitter coupled to the processor and configured to transmit the first message; and a receiver coupled to the processor and configured to receive a second message on the first channel and in response to the first message. A method comprises: selecting a first channel from among a plurality of channels in a network; generating a first message assigning a first grant corresponding to the first channel; transmitting the first message; and receiving a second message on the first channel in response to the first message.
    Type: Application
    Filed: November 15, 2018
    Publication date: March 21, 2019
    Applicant: Futurewei Technologies, Inc.
    Inventors: Xuming Wu, Yuanqiu Luo, Jianhe Gao
  • Publication number: 20190052940
    Abstract: The present invention discloses a passive optical network communications method, reporting, by an optical network unit, ONU, a calibration record of the ONU, where the calibration record includes an ID of a calibrated wavelength channel; sending a first message to the ONU when the OLT determines, according to the calibration record, that a target wavelength channel ID corresponding to a target wavelength channel to which the ONU needs to switch is not in the calibration record, where the first message includes a forced wavelength switching flag; and instructing the ONU to switch to the calibrated target wavelength channel. In this way, the ONU can implement wavelength switching quickly after calibrating a new wavelength channel so as to perform data communication over the calibrated new wavelength channel.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 14, 2019
    Inventors: Bo GAO, Dekun LIU, Xuming WU, Jianhe GAO
  • Patent number: 10181924
    Abstract: An OLT comprises: a memory; a processor coupled to the memory and configured to: determine each of a plurality of channels associated with an ONU, select a first channel from among the channels, and generate a first message comprising at least one field instructing enablement or disablement of the first channel; and a transmitter coupled to the processor and configured to transmit the first message to the ONU. A method implemented in an OLT, the method comprises: determining each of a plurality of channels associated with an ONU; selecting a first channel from among the channels; generating a first message comprising at least one field instructing enablement or disablement of the first channel; and transmitting the first message to the ONU.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: January 15, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xuming Wu, Yuanqiu Luo, Shengping Li, Jianhe Gao, Minghui Tao
  • Publication number: 20180343065
    Abstract: Embodiments of the present invention disclose a method for switching a modulation format of a passive optical network, an apparatus, and a system. The method includes: separately delivering, by an OLT, a registration message to an optical network unit in all supported upstream modulation formats and/or downstream modulation formats; receiving, by the OLT, a first message reported by the optical network unit, where the first message includes an upstream modulation format capability and/or a downstream modulation format capability; and determining, by the OLT, a target upstream modulation format and/or a target downstream modulation format of the optical network unit according to the first message, and instructing the optical network unit to switch to the target upstream modulation format and/or the target downstream modulation format. Therefore, in a PON system that supports a plurality of modulation formats, a modulation format reporting capability of the ONU is improved.
    Type: Application
    Filed: August 3, 2018
    Publication date: November 29, 2018
    Inventors: Shengping LI, Zhicheng YE, Xuming WU
  • Patent number: 10129614
    Abstract: The present invention discloses a passive optical network communications method: reporting, by an optical network unit, ONU, a calibration record of the ONU, where the calibration record includes an ID of a calibrated wavelength channel; sending a first message to the ONU when the OLT determines, according to the calibration record, that a target wavelength channel ID corresponding to a target wavelength channel to which the ONU needs to switch is not in the calibration record, where the first message includes a forced wavelength switching flag; and instructing the ONU to switch to the calibrated target wavelength channel. In this way, the ONU can implement wavelength switching quickly after calibrating a new wavelength channel so as to perform data communication over the calibrated new wavelength channel.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: November 13, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Bo Gao, Dekun Liu, Xuming Wu, Jianhe Gao
  • Publication number: 20180302164
    Abstract: A passive optical network (PON) includes a first optical line terminal (OLT), a second OLT, and an optical network unit (ONU). The first OLT sends an equalization delay change message to the ONU, wherein the equalization delay change message includes an equalization delay, an upstream channel ID and a downstream channel ID corresponding to the equalization delay. The ONU receives the equalization delay change message. When the ONU tunes from the first OLT to the second OLT, the ONU obtains the equalization delay for upstream transmission according to the upstream channel ID and the downstream channel ID.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 18, 2018
    Inventors: Xuming Wu, Yuanqiu Luo, Dekun Liu, Jianhe Gao