Patents by Inventor Xunyi SONG

Xunyi SONG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11887889
    Abstract: A method of manufacturing a semiconductor device can include: forming an interlayer dielectric layer on an upper surface of a lower metal layer, the lower metal layer including first and second regions; forming a through hole extending from an upper surface of interlayer dielectric layer to the lower metal layer to expose the upper surface of the lower metal layer; forming a conductive layer covering a bottom part and sidewall parts of the through hole, and the upper surface of the interlayer dielectric layer; forming a first dielectric layer covering the first conductive layer on the first region of the lower metal layer; filling the through hole with a first metal; and forming an upper metal layer above the upper surface of the interlayer dielectric layer.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: January 30, 2024
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Zheng Lv, Xunyi Song, Meng Wang
  • Publication number: 20240014213
    Abstract: A method of manufacturing a semiconductor device structure can include: forming a first gate dielectric layer on a first region of a semiconductor substrate, and forming a second gate dielectric layer on a second region of the semiconductor substrate; forming a conductive layer on the first and second gate dielectric layers; forming a barrier layer on the conductive layer; patterning the barrier layer to form a barrier pattern; etching the conductive layer to form first and second gates using the barrier pattern as a mask; forming a photolithography pattern on the semiconductor substrate, where the photolithography pattern exposes the well implantation area of the first region and a portion of the barrier pattern on the first gate; forming a well region in the well implantation area using the lithography pattern and the exposed barrier pattern as masks; and removing the photolithography pattern and the barrier pattern.
    Type: Application
    Filed: June 2, 2023
    Publication date: January 11, 2024
    Inventors: Zheng Lv, Xunyi Song, Chihsen Huang
  • Patent number: 11742206
    Abstract: A laterally diffused metal oxide semiconductor device can include: a well region having a second doping type; a reduced surface field effect layer of a first doping type formed by an implantation process in a predetermined region of the well region, where a length of the reduced surface field effect layer is less than a length of the well region; a body region of the first doping type extending from a top surface of the well region into the well region; a drain portion of the second doping type extending from the top surface of the well region into the well region; and an insulating structure located between the body region and the drain portion, at least a portion of the insulating structure is located on the top surface of the well region.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: August 29, 2023
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Budong You, Hui Yu, Meng Wang, Yicheng Du, Chuan Peng, Xunyi Song
  • Publication number: 20220328617
    Abstract: Disclosed is a field effect transistor (FET) and a method for manufacturing the same, the FET comprises: a substrate, a first well region located on the substrate, a second well region, a body contact region, a source region, a drain region and a gate conductor. The body contact region, the source region and the drain region are located in the first well region, the doping concentration of the second well region is higher than that of the first well region. A parasitic bipolar junction transistor (BJT) is located in the field effect transistor, current flowing through the BJT is controlled by adjusting doping concentration or area of the second well region. The second well region is formed in the first well region, so that the holding voltage of the FET is improved, and finally effect on the FET caused by the current flowing through the BJT can be weakened.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 13, 2022
    Inventors: Xianguo Huang, Xunyi Song, Meng Wang
  • Publication number: 20210384073
    Abstract: A method of manufacturing a semiconductor device can include: forming an interlayer dielectric layer on an upper surface of a lower metal layer, the lower metal layer including first and second regions; forming a through hole extending from an upper surface of interlayer dielectric layer to the lower metal layer to expose the upper surface of the lower metal layer; forming a conductive layer covering a bottom part and sidewall parts of the through hole, and the upper surface of the interlayer dielectric layer; forming a first dielectric layer covering the first conductive layer on the first region of the lower metal layer; filling the through hole with a first metal; and forming an upper metal layer above the upper surface of the interlayer dielectric layer.
    Type: Application
    Filed: June 2, 2021
    Publication date: December 9, 2021
    Inventors: Zheng Lv, Xunyi Song, Meng Wang
  • Publication number: 20210193815
    Abstract: A laterally diffused metal oxide semiconductor device can include: a well region having a second doping type; a reduced surface field effect layer of a first doping type formed by an implantation process in a predetermined region of the well region, where a length of the reduced surface field effect layer is less than a length of the well region; a body region of the first doping type extending from a top surface of the well region into the well region; a drain portion of the second doping type extending from the top surface of the well region into the well region; and an insulating structure located between the body region and the drain portion, at least a portion of the insulating structure is located on the top surface of the well region.
    Type: Application
    Filed: March 5, 2021
    Publication date: June 24, 2021
    Inventors: Budong You, Hui Yu, Meng Wang, Yicheng Du, Chuan Peng, Xunyi Song
  • Patent number: 10998416
    Abstract: A laterally diffused metal oxide semiconductor device can include: a well region having a second doping type; a reduced surface field effect layer of a first doping type formed by an implantation process in a predetermined region of the well region, where a length of the reduced surface field effect layer is less than a length of the well region; a body region of the first doping type extending from a top surface of the well region into the well region; a drain portion of the second doping type extending from the top surface of the well region into the well region; and an insulating structure located between the body region and the drain portion, at least a portion of the insulating structure is located on the top surface of the well region.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: May 4, 2021
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Budong You, Hui Yu, Meng Wang, Yicheng Du, Chuan Peng, Xunyi Song
  • Publication number: 20190363188
    Abstract: A laterally diffused metal oxide semiconductor device can include: a well region having a second doping type; a reduced surface field effect layer of a first doping type formed by an implantation process in a predetermined region of the well region, where a length of the reduced surface field effect layer is less than a length of the well region; a body region of the first doping type extending from a top surface of the well region into the well region; a drain portion of the second doping type extending from the top surface of the well region into the well region; and an insulating structure located between the body region and the drain portion, at least a portion of the insulating structure is located on the top surface of the well region.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 28, 2019
    Inventors: Budong You, Hui Yu, Meng Wang, Yicheng Du, Chuan Peng, Xunyi Song
  • Publication number: 20190237537
    Abstract: Disclosed is a field effect transistor (FET) and a method for manufacturing the same, the FET comprises: a substrate, a first well region located on the substrate, a second well region, a body contact region, a source region, a drain region and a gate conductor. The body contact region, the source region and the drain region are located in the first well region, the doping concentration of the second well region is higher than that of the first well region. A parasitic bipolar junction transistor (BJT) is located in the field effect transistor, current flowing through the BJT is controlled by adjusting doping concentration or area of the second well region. The second well region is formed in the first well region, so that the holding voltage of the FET is improved, and finally effect on the FET caused by the current flowing through the BJT can be weakened.
    Type: Application
    Filed: January 11, 2019
    Publication date: August 1, 2019
    Inventors: Xianguo Huang, Xunyi Song, Meng Wang
  • Patent number: 10056452
    Abstract: A method for manufacturing a vertical super junction drift layer of a power semiconductor device. The method includes: a): adopting a P+ single crystal silicon to prepare a P+ substrate; b): finishing top processes of the devices on the P+ substrate, forming at least a P type region, manufacturing active area and metallizing the top surface of the P+ substrate; c): thinning the back surface of the P+ single crystal silicon; d): selectively implanting H+ ions at the back surface repeatedly and then annealing to form N pillars in the P type region; and e): metallizing the back surface.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: August 21, 2018
    Assignees: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA, ELECTRONIC AND INFORMATION ENGINEERING IN DONGGUAN, UESTC
    Inventors: Zehong Li, Wenlong Song, Xunyi Song, Hongming Gu, Youbiao Zou, Jinping Zhang, Bo Zhang
  • Publication number: 20160315142
    Abstract: A method for manufacturing a vertical super junction drift layer of a power semiconductor device. The method includes: a): adopting P+ single crystal silicon to prepare a P+ substrate; b): finishing top processes of the devices on the P+ substrate, forming at least P type region, manufacturing active area and metallizing the top surface of the P+ substrate; c): thinning the back surface of the P+ single crystal silicon; d): selectively implanting H+ ions at the back surface repeatedly and then annealing to form N pillars in the P type region; and e): metallizing the back surface.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 27, 2016
    Inventors: Zehong LI, Wenlong SONG, Xunyi SONG, Hongming GU, Youbiao ZOU, Jinping ZHANG, Bo ZHANG