Patents by Inventor Xusong Wang

Xusong Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939857
    Abstract: Described herein are systems and techniques for monitoring for monitoring and evaluating conditions associated with a wellbore and wellbore operations that use neural operators instead of computationally intensive iterative differential equations. Such systems and techniques allow for determinations to be made as operations associated with a wellbore are performed. Instead of having to wait for computationally intensive tasks to be performed or take risks of proceeding with a wellbore operation without real-time evaluations being performed, these wellbore operations may be continued while determinations are timely made, thus improving operation of computing systems that perform evaluations and that make decisions regarding safely and efficiently performing wellbore operations such as drilling a wellbore, cementing wellbore casings in place, or injecting fluids into formations of the Earth.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: March 26, 2024
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Xusong Wang, Ahmed Elsayed Fouda, Xiang Wu, Christopher Michael Jones, Wei Zhang, Junwen Dai
  • Patent number: 11914096
    Abstract: A method for identifying a collar using machine learning may include acquiring one or more measurements from one or more depth points within a wellbore including a tubular string, training a machine learning model using a training dataset to create a trained machine learning model, and identifying at least one hyperparameter using the trained machine learning model. The method may further include creating a synthetic model, wherein the synthetic model is defined by one or more pipe attributes, minimizing a mismatch between the one or more measurements and the synthetic model utilizing the at least one hyperparameter, updating the synthetic model to form an updated synthetic model, and repeating the minimizing the mismatch with the updated synthetic model until a threshold is met.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: February 27, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ahmed Fouda, Junwen Dai, Xusong Wang
  • Publication number: 20230213681
    Abstract: A method for identifying a collar using machine learning may include acquiring one or more measurements from one or more depth points within a wellbore including a tubular string, training a machine learning model using a training dataset to create a trained machine learning model, and identifying at least one hyperparameter using the trained machine learning model. The method may further include creating a synthetic model, wherein the synthetic model is defined by one or more pipe attributes, minimizing a mismatch between the one or more measurements and the synthetic model utilizing the at least one hyperparameter, updating the synthetic model to form an updated synthetic model, and repeating the minimizing the mismatch with the updated synthetic model until a threshold is met.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 6, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Ahmed Fouda, Junwen Dai, Xusong Wang
  • Publication number: 20230030531
    Abstract: Systems and methods of the present disclosure generally relate to monitoring, evaluating, and controlling fracture geometry during a hydraulic fracturing operation, in real time. A method comprises measuring a signal representing a condition in a wellbore; inputting the signal into a model for estimating a dimension of a dominant fracture; determining the dimension of the dominant fracture; determining a target dimension for the dominant fracture; and minimizing a difference between the dimension of the dominant fracture and the target dimension in real time, by adjusting at least an injection pressure or flow rate of a hydraulic fracturing fluid into the wellbore.
    Type: Application
    Filed: October 12, 2022
    Publication date: February 2, 2023
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dinesh Ananda Shetty, Xusong Wang, Xiang Wu, Srividhya Sridhar
  • Patent number: 11512568
    Abstract: Systems and methods of the present disclosure generally relate to monitoring, evaluating, and controlling fracture geometry during a hydraulic fracturing operation, in real time. A method comprises measuring a signal representing a condition in a wellbore; inputting the signal into a model for estimating a dimension of a dominant fracture; determining the dimension of the dominant fracture; determining a target dimension for the dominant fracture; and minimizing a difference between the dimension of the dominant fracture and the target dimension in real time, by adjusting at least an injection pressure or flow rate of a hydraulic fracturing fluid into the wellbore.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: November 29, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dinesh Ananda Shetty, Xusong Wang, Xiang Wu, Srividhya Sridhar
  • Publication number: 20220065085
    Abstract: Systems and methods of the present disclosure generally relate to monitoring, evaluating, and controlling fracture geometry during a hydraulic fracturing operation, in real time. A method comprises measuring a signal representing a condition in a wellbore; inputting the signal into a model for estimating a dimension of a dominant fracture; determining the dimension of the dominant fracture; determining a target dimension for the dominant fracture; and minimizing a difference between the dimension of the dominant fracture and the target dimension in real time, by adjusting at least an injection pressure or flow rate of a hydraulic fracturing fluid into the wellbore.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 3, 2022
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dinesh Ananda Shetty, Xusong Wang, Xiang Wu, Srividhya Sridhar