Patents by Inventor Ya SHEN

Ya SHEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096778
    Abstract: A semiconductor die package is provided. The semiconductor die package includes a semiconductor die and a package substrate supporting and electrically connected to the semiconductor die. The semiconductor die has a corner. The package substrate includes several conductive lines, and one of the conductive lines under the corner of the semiconductor die includes a first line segment and a second line segment connected to the first line segment. The first line segment is linear and extends in a first direction. The second line segment is non-linear and has a varying extension direction.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 21, 2024
    Inventors: Ya-Huei LEE, Shu-Shen YEH, Kuo-Ching HSU, Shyue-Ter LEU, Po-Yao LIN, Shin-Puu JENG
  • Patent number: 11935787
    Abstract: A semiconductor device includes a first gate structure disposed on a substrate and extending in a first direction. The first gate structure includes a first gate electrode, a first cap insulating layer disposed over the first gate electrode, first sidewall spacers disposed on opposing side faces of the first gate electrode and the first cap insulating layer and second sidewall spacers disposed over the first sidewall spacers. The semiconductor device further includes a first protective layer formed over the first cap insulating layer, the first sidewall spacers and the second sidewall spacers. The first protective layer has a ?-shape having a head portion and two leg portions in a cross section along a second direction perpendicular to the first direction.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hui-Chi Chen, Hsiang-Ku Shen, Jeng-Ya Yeh
  • Publication number: 20240076422
    Abstract: A supported metallocene catalyst includes a carrier and a metallocene component. The carrier includes an inorganic oxide particle and an alkyl aluminoxane material. The inorganic oxide particle includes at least one inorganic oxide compound selected from the group consisting of an oxide of Group 3A and an oxide of Group 4A. The alkyl aluminoxane material includes an alkyl aluminoxane compound and an alkyl aluminum compound that is present in amount ranging from greater than 0.01 wt % to less than 14 wt % base on 100 wt % of the alkyl aluminoxane material. The metallocene component is supported on the carrier, and includes one of a metallocene compound containing a metal from Group 3B, a metallocene compound containing a metal from Group 4B, and a combination thereof. A method for preparing the supported metallocene catalyst and a method for preparing polyolefin using the supported metallocene catalyst are also disclosed.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 7, 2024
    Inventors: Jing-Cherng TSAI, Jen-Long WU, Wen-Hao KANG, Kuei-Pin LIN, Jing-Yu LEE, Jun-Ye HONG, Zih-Yu SHIH, Cheng-Hung CHIANG, Gang-Wei SHEN, Yu-Chuan SUNG, Chung-Hua WENG, Hsing-Ya CHEN
  • Patent number: 11915501
    Abstract: An object detection method and apparatus include obtaining a point cloud of a scene that includes location information of points. The point cloud is mapped to a 3D voxel representation. A convolution operation is performed on the feature information of the 3D voxel to obtain a convolution feature set and initial positioning information of a candidate object region is determined based on the convolution feature set. A target point is located in the candidate object region in the point cloud is determined and the initial positioning information of the candidate object region is adjusted based on the location information and target convolution feature information of the target point. Positioning information of a target object region is obtained to improve object detection accuracy.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: February 27, 2024
    Assignee: TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED
    Inventors: Yi Lun Chen, Shu Liu, Xiao Yong Shen, Yu Wing Tai, Jia Ya Jia
  • Patent number: 11838005
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: December 5, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ya Shen, Michael D. Hodge
  • Publication number: 20230327649
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Inventors: Ya SHEN, Rohan W. HOULDEN, David M. AICHELE, Jeffrey B. SHEALY
  • Publication number: 20230299747
    Abstract: According to the present disclosure, a passband filter is provided. The passband filter has a series branch, where the series branch comprises a set of one or more resonators having a resonant frequency sufficiently away from the passband of the filter such that spurious modes, of the set of one or more resonators, that are associated with the resonant frequency are outside of the passband of the filter; a set of one or more reactive components in series with the set of one or more resonators, the set of one or more reactive components having a resonant frequency sufficiently away from the passband of the filter such that the spurious modes of the set of one or more reactive components, that are associated with the resonant frequency are outside of the passband, and such that the resulting combined resonant frequency of the series combination of the set of one or more resonators and the set of one or more reactive components is within the passband of the filter.
    Type: Application
    Filed: March 17, 2023
    Publication date: September 21, 2023
    Inventor: Ya Shen
  • Patent number: 11689186
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: June 27, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ya Shen, Rohan W. Houlden, David M. Aichele, Jeffrey B. Shealy
  • Publication number: 20230155571
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 18, 2023
    Inventors: YA SHEN, MICHAEL D. HODGE
  • Patent number: 11621698
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: April 4, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ya Shen, Rohan W. Houlden, David M. Aichele, Jeffrey B. Shealy
  • Patent number: 11581872
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: February 14, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ya Shen, Michael D. Hodge
  • Publication number: 20230006631
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: September 14, 2022
    Publication date: January 5, 2023
    Inventors: Rohan W. HOULDEN, Ya SHEN, David M. AICHELE, Jeffrey B. SHEALY
  • Publication number: 20220393667
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Inventors: Jeffrey B. SHEALY, Michael D. HODGE, Rohan W. HOULDEN, Mary WINTERS, Ramakrishna VETURY, Ya SHEN, David M. AICHELE
  • Publication number: 20220393668
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: Jeffrey B. SHEALY, Michael D. HODGE, Rohan W. HOULDEN, Mary WINTERS, Ramakrishna VETURY, Ya SHEN, David M. AICHELE
  • Publication number: 20220368308
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 17, 2022
    Inventors: Ya Shen, Michael D. Hodge
  • Publication number: 20220345110
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: July 8, 2022
    Publication date: October 27, 2022
    Inventors: Ya SHEN, Rohan W. HOULDEN, David M. AICHELE, Jeffrey B. SHEALY
  • Patent number: 11476825
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: October 18, 2022
    Assignee: AKOUSTIS, INC.
    Inventors: Rohan W. Houlden, Ya Shen, David M. Aichele, Jeffrey B. Shealy
  • Patent number: 11456723
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: September 27, 2022
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Michael D. Hodge, Rohan W. Houlden, Mary Winters, Ramakrishna Vetury, Ya Shen, David M. Aichele
  • Patent number: 11456724
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include a plurality of resonator devices and a plurality of resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: September 27, 2022
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Michael D. Hodge, Rohan W. Houlden, Mary Winters, Ramakrishna Vetury, Ya Shen, David M. Aichele
  • Patent number: 11349453
    Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: May 31, 2022
    Assignee: Akoustis, Inc.
    Inventors: Ya Shen, Michael D. Hodge