Patents by Inventor Ya-Wen Chang

Ya-Wen Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968869
    Abstract: An electronic device includes a flexible substrate and a conductive wire. The conductive wire is disposed on the flexible substrate and includes a metal portion and a plurality of openings disposed in the metal portion. The metal portion includes a plurality of extending portions and a plurality of joint portions, and each of the openings is surrounded by two of the plurality of extending portions and two of the plurality of joint portions. A ratio of a sum of widths of the plurality of extending portions to a sum of widths of the plurality of joint portions is in a range from 0.8 to 1.2.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: April 23, 2024
    Assignee: InnoLux Corporation
    Inventors: Ya-Wen Lin, Chien-Chih Chen, Yen-Hsi Tu, Cheng-Wei Chang, Shu-Hui Yang
  • Patent number: 11955338
    Abstract: A method includes providing a substrate having a surface such that a first hard mask layer is formed over the surface and a second hard mask layer is formed over the first hard mask layer, forming a first pattern in the second hard mask layer, where the first pattern includes a first mandrel oriented lengthwise in a first direction and a second mandrel oriented lengthwise in a second direction different from the first direction, and where the first mandrel has a top surface, a first sidewall, and a second sidewall opposite to the first sidewall, and depositing a material towards the first mandrel and the second mandrel such that a layer of the material is formed on the top surface and the first sidewall but not the second sidewall of the first mandrel.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Chun Huang, Ya-Wen Yeh, Chien-Wen Lai, Wei-Liang Lin, Ya Hui Chang, Yung-Sung Yen, Ru-Gun Liu, Chin-Hsiang Lin, Yu-Tien Shen
  • Publication number: 20240077392
    Abstract: According to the present disclosure, a measuring method of liquid mixture purity includes steps as follows. A storage tank is provided, wherein the storage tank is configured for storing a liquid mixture including formic acid and water. A calculating unit is provided, wherein a plurality of formic acid purity values are saved in the calculating unit. A pressure-decreasing and heating step is performed by reducing a pressure of the storage tank and heating the storage tank. A measuring step is performed by measuring in the inner space of the storage tank to obtain a pressure value, and measuring the liquid mixture simultaneously to obtain a temperature value. A calculating step is performed by inputting the pressure value and the temperature value into the calculating unit, wherein the calculating unit outputs one of the formic acid purity values corresponding thereto.
    Type: Application
    Filed: April 11, 2023
    Publication date: March 7, 2024
    Inventors: Kuo-Liang YEH, Ya-Ju CHANG, Jung-Kuei PENG, Sheng-Tang CHANG, Min-Wen WENG, Wen-Ting HUANG
  • Publication number: 20230382065
    Abstract: A method for producing embedded hydrogel contact lenses comprises at least the following steps: obtaining an insert made of a crosslinked polymeric material comprising repeating units of a free-radical photoinitiator; placing the insert in a female lens mold half; dosing an amount of a lens-forming composition to immerse the insert in the female lens mold half; closing tightly a male lens mold half onto the top of the female lens mold half halves to form a molding assembly; actinically curing both the lens-forming composition in the molding assembly to form an embedded hydrogel lens precursor which comprises a bulk hydrogel material formed the lens-forming composition and the insert that is embedded therein and covalently linked to the bulk hydrogel material.
    Type: Application
    Filed: May 24, 2023
    Publication date: November 30, 2023
    Inventors: Jing Cheng, Michelle Plavnik, Ya-Wen Chang, Feng Jing, Steve Yun Zhang
  • Patent number: 11766823
    Abstract: A method or apparatus for creating a three-dimensional tissue construct of a desired shape for repair or replacement of a portion of an organism. The method may comprise injecting at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The apparatus may comprise an injector configured to inject at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The first material may comprise a yield stress material, which may be a material exhibiting Herschel-Bulkley behavior. The tissue construct may have a smallest feature size of ten micrometers or less.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: September 26, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Thomas Ettor Angelini, Wallace Gregory Sawyer, Kyle Gene Rowe, Tapomoy Bhattacharjee, Alberto Fernandez-Nieves, Ya-Wen Chang, Samantha M. Marquez
  • Patent number: 11654612
    Abstract: A method or apparatus for three-dimensionally printing. The method may comprise causing a phase change in a region of the first material by applying focused energy to the region using a focused energy source, and displacing the first material with a second material. The apparatus may comprise a container configured to hold a first material, a focused energy source configured to cause a phase change in a region of the first material by applying focused energy to the region, and an injector configured to displace the first material with a second material. The first material may comprise a yield stress material, which is a material exhibiting Herschel-Bulkley behavior. The yield stress material may comprise a soft granular gel. The second material may comprise one or more cells.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: May 23, 2023
    Assignees: University of Florida Research Foundation, Inc., Georgia Tech Research Corporation
    Inventors: Alberto Fernandez-Nieves, Thomas Ettor Angelini, Ya-Wen Chang, Samantha M. Marquez
  • Publication number: 20220392501
    Abstract: A memory storage apparatus including a memory circuit and a memory controller is provided. The memory circuit is configured to store data. The memory controller is coupled to the memory circuit via a data bus. The memory controller performs initial setting of the memory circuit on the basis of a width of the data bus. In addition, an operating method of a memory storage apparatus is also provided.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 8, 2022
    Applicant: Winbond Electronics Corp.
    Inventors: Ju-An Chiang, Ya-Wen Chang
  • Patent number: 11501807
    Abstract: A memory storage apparatus including a memory circuit and a memory controller is provided. The memory circuit is configured to store data. The memory controller is coupled to the memory circuit via a data bus. The memory controller performs initial setting of the memory circuit on the basis of a width of the data bus. In addition, an operating method of a memory storage apparatus is also provided.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: November 15, 2022
    Assignee: Winbond Electronics Corp.
    Inventors: Ju-An Chiang, Ya-Wen Chang
  • Publication number: 20220055287
    Abstract: A method or apparatus for three-dimensionally printing. The method may comprise causing a phase change in a region of the first material by applying focused energy to the region using a focused energy source, and displacing the first material with a second material. The apparatus may comprise a container configured to hold a first material, a focused energy source configured to cause a phase change in a region of the first material by applying focused energy to the region, and an injector configured to displace the first material with a second material. The first material may comprise a yield stress material, which is a material exhibiting Herschel-Bulkley behavior. The yield stress material may comprise a soft granular gel. The second material may comprise one or more cells.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Inventors: Alberto Fernandez-Nieves, Thomas Eltor Angelini, Ya-Wen Chang, Samantha M. Marquez
  • Patent number: 11192292
    Abstract: A method or apparatus for three-dimensionally printing. The method may comprise causing a phase change in a region of the first material by applying focused energy to the region using a focused energy source, and displacing the first material with a second material. The apparatus may comprise a container configured to hold a first material, a focused energy source configured to cause a phase change in a region of the first material by applying focused energy to the region, and an injector configured to displace the first material with a second material. The first material may comprise a yield stress material, which is a material exhibiting Herschel-Bulkley behavior. The yield stress material may comprise a soft granular gel. The second material may comprise one or more cells.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: December 7, 2021
    Assignees: University of Florida Research Foundation, Inc., Georigia Tech Research Corporation
    Inventors: Alberto Fernandez-Nieves, Thomas Ettor Angelini, Ya-Wen Chang, Samantha M. Marquez
  • Publication number: 20210252777
    Abstract: A method or apparatus for creating a three-dimensional tissue construct of a desired shape for repair or replacement of a portion of an organism. The method may comprise injecting at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The apparatus may comprise an injector configured to inject at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The first material may comprise a yield stress material, which may be a material exhibiting Herschel-Bulkley behavior. The tissue construct may have a smallest feature size of ten micrometers or less.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 19, 2021
    Inventors: Thomas Ettor ANGELINI, Wallace Gregory SAWYER, Kyle Gene ROWE, Tapomoy BHATTACHARJEE, Alberto FERNANDEZ-NIEVES, Ya-Wen CHANG, Samantha M. MARQUEZ
  • Patent number: 11007705
    Abstract: A method or apparatus for creating a three-dimensional tissue construct of a desired shape for repair or replacement of a portion of an organism. The method may comprise injecting at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The apparatus may comprise an injector configured to inject at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The first material may comprise a yield stress material, which may be a material exhibiting Herschel-Bulkley behavior. The tissue construct may have a smallest feature size of ten micrometers or less.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: May 18, 2021
    Assignees: University of Florida Research Foundation, Inc., Georgia Tech Research Corporation
    Inventors: Thomas Ettor Angelini, Wallace Gregory Sawyer, Kyle Gene Rowe, Tapomoy Bhattacharjee, Alberto Fernandez-Nieves, Ya-Wen Chang, Samantha M. Marquez
  • Patent number: 10482966
    Abstract: A block decoder of nonvolatile memory includes a level shifter and a decoder. A first transistor has a control terminal coupled to a first control node, a first terminal coupled to an output node, and a second terminal coupled to a first supply voltage. A second transistor has a control terminal coupled to a second control node, a first terminal coupled to a ground voltage, and a second terminal coupled to the output node. A third transistor has a control terminal coupled to the output node, a first terminal coupled to a first node, and a second terminal coupled to second supply voltage. A fourth transistor has a control terminal coupled to the second control node, a first terminal coupled to the first node, and a second terminal coupled to the output node.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: November 19, 2019
    Assignee: WINBOND ELECTRONICS CORP.
    Inventors: Ju-An Chiang, Ya-Wen Chang
  • Publication number: 20190160286
    Abstract: Disclosed herein is a novel apparatus and the uses thereof in the prophylaxis and/or treatment of neuropsychiatric disorders. The present apparatus comprises a detecting means, a stimulation means, a virtual reality means and a processor. According to some embodiments of the present disclosure, the present apparatus produces an additive or synergistic effect on the treatment of neuropsychiatric disorders.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 30, 2019
    Applicant: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: Yen-Kuang YANG, Che-Wei LIN, Shih-Hsien LIN, Kao-Chin CHEN, Ya-Wen CHANG, Ya-Hsin HSIAO
  • Publication number: 20190147956
    Abstract: A block decoder of nonvolatile memory includes a level shifter and a decoder. A first transistor has a control terminal coupled to a first control node, a first terminal coupled to an output node, and a second terminal coupled to a first supply voltage. A second transistor has a control terminal coupled to a second control node, a first terminal coupled to a ground voltage, and a second terminal coupled to the output node. A third transistor has a control terminal coupled to the output node, a first terminal coupled to a first node, and a second terminal coupled to second supply voltage. A fourth transistor has a control terminal coupled to the second control node, a first terminal coupled to the first node, and a second terminal coupled to the output node.
    Type: Application
    Filed: October 5, 2018
    Publication date: May 16, 2019
    Inventors: Ju-An CHIANG, Ya-Wen CHANG
  • Patent number: 9968898
    Abstract: In some embodiments, the present invention provides amphiphilic nanosheets that comprise lamellar crystals with at least two regions: a first hydrophilic region and a second hydrophobic region. In some embodiments, the amphiphilic nanosheets of the present invention also comprise a plurality of functional groups that are appended to the lamellar crystals. In some embodiments the functional groups are hydrophobic functional groups that are appended to the second region of the lamellar crystals. In some embodiments, the lamellar crystals comprise ?-zirconium phosphates. Additional embodiments of the present invention pertain to methods of making the aforementioned amphiphilic nanosheets. Such methods generally comprise appending one or more functional groups to a stack of lamellar crystals; and exfoliating the stack of lamellar crystals for form the amphiphilic nanosheets.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: May 15, 2018
    Assignee: The Texas A&M University System
    Inventors: Zhengdong Cheng, Andres F. Mejia, Agustin Diaz, Abraham Clearfield, Mahboobul S. Mannan, Ya-Wen Chang
  • Publication number: 20180021140
    Abstract: A method or apparatus for creating a three-dimensional tissue construct of a desired shape for repair or replacement of a portion of an organism. The method may comprise injecting at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The apparatus may comprise an injector configured to inject at least one biomaterial in a three-dimensional pattern into a first material such that the at least one biomaterial is held in the desired shape of the tissue construct by the first material. The first material may comprise a yield stress material, which may be a material exhibiting Herschel-Bulkley behavior. The tissue construct may have a smallest feature size of ten micrometers or less.
    Type: Application
    Filed: February 12, 2016
    Publication date: January 25, 2018
    Applicants: University of Florida Research Foundation, Inc., Georgia Tech Research Corporation
    Inventors: Thomas Ettor Angelini, Wallace Gregory Sawyer, Kyle Gene Rowe, Tapomoy Bhattacharjee, Alberto Fernandez-Nieves, Ya-Wen Chang, Samantha M. Marquez
  • Publication number: 20170361534
    Abstract: A method or apparatus for three-dimensionally printing. The method may comprise causing a phase change in a region of the first material by applying focused energy to the region using a focused energy source, and displacing the first material with a second material. The apparatus may comprise a container configured to hold a first material, a focused energy source configured to cause a phase change in a region of the first material by applying focused energy to the region, and an injector configured to displace the first material with a second material. The first material may comprise a yield stress material, which is a material exhibiting Herschel-Bulkley behavior. The yield stress material may comprise a soft granular gel. The second material may comprise one or more cells.
    Type: Application
    Filed: December 4, 2015
    Publication date: December 21, 2017
    Applicants: University of Florida Research Foundation, Inc., Georigia Tech Research Corporation
    Inventors: Alberto Fernandez-Nieves, Thomas Ettor Angelini, Ya-Wen Chang, Samantha M. Marquez
  • Publication number: 20170305108
    Abstract: A down-proof fabric includes a base fabric, an adhesive layer disposed on the base fabric, and at least one down-proof functional layer disposed on the adhesive layer. The down-proof functional layer includes a plurality of voids to block the penetration of the down. The present disclosure improves the drawbacks of conventional down-proof techniques and provides a light, thin, and breathable down-proof fabric with good hand feeling.
    Type: Application
    Filed: February 20, 2017
    Publication date: October 26, 2017
    Inventors: Yu-Chun WU, Ching-Nan HUANG, Kuan-Liang WEI, Ya-Wen CHANG
  • Publication number: 20170173546
    Abstract: In some embodiments, the present invention provides amphiphilic nanosheets that comprise lamellar crystals with at least two regions: a first hydrophilic region and a second hydrophobic region. In some embodiments, the amphiphilic nanosheets of the present invention also comprise a plurality of functional groups that are appended to the lamellar crystals. In some embodiments the functional groups are hydrophobic functional groups that are appended to the second region of the lamellar crystals. In some embodiments, the lamellar crystals comprise ?-zirconium phosphates. Additional embodiments of the present invention pertain to methods of making the aforementioned amphiphilic nanosheets. Such methods generally comprise appending one or more functional groups to a stack of lamellar crystals; and exfoliating the stack of lamellar crystals for form the amphiphilic nanosheets.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 22, 2017
    Inventors: Zhengdong Cheng, Andres F. Mejia, Agustin Diaz, Abraham Clearfield, Mahboobul S. Mannan, Ya-Wen Chang