Patents by Inventor Yacov KOFFLER

Yacov KOFFLER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230323050
    Abstract: Provided herein is technology relating to materials having microscale and/or nanoscale features and particularly, but not exclusively, to porous materials comprising microscale features, methods for producing porous materials comprising microscale features, drug delivery vehicles, and related kits, systems, and uses.
    Type: Application
    Filed: March 24, 2023
    Publication date: October 12, 2023
    Inventors: Mark H. Tuszynski, Jeffrey S. Sakamoto, Kendell M. Pawelec, Yacov Koffler, Michael Sailor, Jonathan Zuidema
  • Publication number: 20220167988
    Abstract: Biomimetic scaffolds for neural tissue growth are disclosed herein which have a plurality of microchannels disposed within a sheath. Each microchannel comprises a porous wall that is formed from a biocompatible and biodegradable material. The biocompatible and biodegradable material may be polyethylene glycol) diacrylate, methacrylated gelatin, methacrylated collagen, or polycaprolactone, and combinations thereof. The biomimetic scaffolds have high open volume % enabling superior (linear and high fidelity) neural tissue growth, while minimizing inflammation near the site of implantation in vivo.
    Type: Application
    Filed: April 10, 2020
    Publication date: June 2, 2022
    Inventors: Mark H. Tuszynski, Yacov Koffler, Isac Lazarovits
  • Publication number: 20210353833
    Abstract: Tissue scaffolds for neural tissue growth have a plurality of microchannels disposed within a sheath. Each microchannel comprises a porous wall having a thickness of ?about 100 ?m that is formed from a biocompatible and biodegradable material comprising a polyester polymer. The polyester polymer may be polycaprolactone, poly(lactic-co-glycolic acid) polymer, and combinations thereof. The tissue scaffolds have high open volume % enabling superior (linear and high fidelity) neural tissue growth, while minimizing inflammation near the site of implantation in vivo. In other aspects, methods of making such tissue scaffolds are provided. Such a method may include mixing a reduced particle size porogen with a polymeric precursor solution. The material is cast onto a template and then can be processed, including assembly in a sheath and removal of the porogen, to form a tissue scaffold having a plurality of porous microchannels.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 18, 2021
    Applicants: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Jeffrey S. SAKAMOTO, Dena SHAHRIARI, Mark H. TUSZYNSKI, Wendy CAMPANA, Yacov KOFFLER
  • Patent number: 11110207
    Abstract: Tissue scaffolds for neural tissue growth have a plurality of microchannels disposed within a sheath. Each microchannel comprises a porous wall having a thickness of ?about 100 ?m that is formed from a biocompatible and biodegradable material comprising a polyester polymer. The polyester polymer may be polycaprolactone, poly(lactic-co-glycolic acid) polymer, and combinations thereof. The tissue scaffolds have high open volume % enabling superior (linear and high fidelity) neural tissue growth, while minimizing inflammation near the site of implantation in vivo. In other aspects, methods of making such tissue scaffolds are provided. Such a method may include mixing a reduced particle size porogen with a polymeric precursor solution. The material is cast onto a template and then can be processed, including assembly in a sheath and removal of the porogen, to form a tissue scaffold having a plurality of porous microchannels.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: September 7, 2021
    Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, The United States Government as represented by the Department of Veterans Affairs
    Inventors: Jeffrey S. Sakamoto, Dena Shahriari, Mark H. Tuszynski, Wendy Campana, Yacov Koffler
  • Publication number: 20200000971
    Abstract: Tissue scaffolds for neural tissue growth have a plurality of microchannels disposed within a sheath. Each microchannel comprises a porous wall having a thickness of ?about 100 ?m that is formed from a biocompatible and biodegradable material comprising a polyester polymer. The polyester polymer may be polycaprolactone, poly(lactic-co-glycolic acid) polymer, and combinations thereof. The tissue scaffolds have high open volume % enabling superior (linear and high fidelity) neural tissue growth, while minimizing inflammation near the site of implantation in vivo. In other aspects, methods of making such tissue scaffolds are provided. Such a method may include mixing a reduced particle size porogen with a polymeric precursor solution. The material is cast onto a template and then can be processed, including assembly in a sheath and removal of the porogen, to form a tissue scaffold having a plurality of porous microchannels.
    Type: Application
    Filed: August 20, 2019
    Publication date: January 2, 2020
    Applicants: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Jeffrey S. SAKAMOTO, Dena SHAHRIARI, Mark H. TUSZYNSKI, Wendy CAMPANA, Yacov KOFFLER
  • Publication number: 20190350720
    Abstract: Implantable devices for spinal cord and peripheral nerve injury are described. The implants include a three-dimensional printed structure having stem cells disposed therein. Also disclosed are methods of treating neuronal injuries with the disclosed implants.
    Type: Application
    Filed: December 12, 2017
    Publication date: November 21, 2019
    Inventors: Yacov Koffler, Shaochen Chen, Mark Tuszynski, Wei Zhu
  • Patent number: 10426872
    Abstract: Tissue scaffolds for neural tissue growth have a plurality of microchannels disposed within a sheath. Each microchannel comprises a porous wall having a thickness of ?about 100 ?m that is formed from a biocompatible and biodegradable material comprising a polyester polymer. The polyester polymer may be polycaprolactone, poly(lactic-co-glycolic acid) polymer, and combinations thereof. The tissue scaffolds have high open volume % enabling superior (linear and high fidelity) neural tissue growth, while minimizing inflammation near the site of implantation in vivo. In other aspects, methods of making such tissue scaffolds are provided. Such a method may include mixing a reduced particle size porogen with a polymeric precursor solution. The material is cast onto a template and then can be processed, including assembly in a sheath and removal of the porogen, to form a tissue scaffold having a plurality of porous microchannels.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: October 1, 2019
    Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, The United States Of America As Represented By The Department Of Veterans Affairs
    Inventors: Jeffrey S. Sakamoto, Dena Shahriari, Mark H. Tuszynski, Wendy Campana, Yacov Koffler
  • Publication number: 20180280580
    Abstract: Tissue scaffolds for neural tissue growth have a plurality of microchannels disposed within a sheath. Each microchannel comprises a porous wall having a thickness of ?about 100 ?m that is formed from a biocompatible and biodegradable material comprising a polyester polymer. The polyester polymer may be polycaprolactone, poly(lactic-co-glycolic acid) polymer, and combinations thereof. The tissue scaffolds have high open volume % enabling superior (linear and high fidelity) neural tissue growth, while minimizing inflammation near the site of implantation in vivo. In other aspects, methods of making such tissue scaffolds are provided. Such a method may include mixing a reduced particle size porogen with a polymeric precursor solution. The material is cast onto a template and then can be processed, including assembly in a sheath and removal of the porogen, to form a tissue scaffold having a plurality of porous microchannels.
    Type: Application
    Filed: October 7, 2016
    Publication date: October 4, 2018
    Applicants: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Jeffrey S. SAKAMOTO, Dena SHAHRIARI, Mark H. TUSZYNSKI, Wendy CAMPANA, Yacov KOFFLER