Patents by Inventor Yadong Cao

Yadong Cao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10301150
    Abstract: A shock-absorbing and energy-collecting roller cage shoe including a base, a main energy-collecting module, two auxiliary energy-collecting modules, and a roller is provided. The base is provided with three containing spaces for containing the main energy-collecting module and the two auxiliary energy-collecting modules. In the three containing spaces, the main energy-collecting module and the two auxiliary energy-collecting modules are respectively connected fixedly to the base through wire rope shock absorbers, the main energy-collecting module and the two auxiliary energy-collecting modules are respectively pressed on the left side, the upper side and the lower side of the roller, and the right side of the roller is pressed on a cage guide. The energy-collecting modules collect vibrational energy generated by vibration in the operation process of a lifting container, and convert the vibrational energy into collectable piezoelectric energy.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: May 28, 2019
    Assignee: CHINA UNIVERSITY OF MINING AND TECHNOLOGY
    Inventors: Yuxing Peng, Yadong Wang, Zhencai Zhu, Gongbo Zhou, Zhiyuan Shi, Guohua Cao, Songyong Liu, Wei Li
  • Publication number: 20190066863
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Patent number: 10147512
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: December 4, 2018
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20170169911
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 15, 2017
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20170067166
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Patent number: 9530534
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: December 27, 2016
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-Il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Publication number: 20160293288
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Application
    Filed: August 11, 2015
    Publication date: October 6, 2016
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Publication number: 20160108256
    Abstract: Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
    Type: Application
    Filed: February 20, 2015
    Publication date: April 21, 2016
    Inventors: Xiqiang Yang, Yadong Cao, Yongxing Hu, Hua Gu, Ying-Syi Li, Ajay Virkar