Patents by Inventor Yadong Cao

Yadong Cao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240260144
    Abstract: A transparent structure comprising a transparent substrate, a transparent resistive heating element mounted on the substrate, metal traces forming electrodes arranged to be in electrical contact with the transparent heating element and positioned around boundaries of a heated region defining a circuit for electrical flow through the transparent resistive heating element, and a power source connected to the electrodes with the capability of delivering at least 1 volts to the electrodes wherein the transparent resistive heating element comprises a sparse metal conductive layer comprising nanowire segments of noble metal coated silver having a sheet resistance from about 1 Ohms/sq. to about 300 Ohms/sq and having an unpatterned area of at least about 0.25 cm2.
    Type: Application
    Filed: January 25, 2024
    Publication date: August 1, 2024
    Inventors: Xiaofeng Chen, Michael Fang, Yadong Cao, Alexander Seung-il Hong, Xiqiang Yang, Ajay Virkar, Devika Madan Oak, Feiqun Li, Qiuxiang Zhang
  • Patent number: 11910525
    Abstract: Structures are described having thin flexible polymer substrates with electrically conductive films on each opposing surface while having high optical transmittance and good optical properties. The structures can have total thicknesses of no more than about 30 microns and good flexibility. Processing approaches are described that allow for the coating of the very thin structures by providing support through the coating process. The structures are demonstrated to have good durability under conditions designed to test accelerated wear for touch sensor use.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: February 20, 2024
    Assignee: C3 Nano, Inc.
    Inventors: Xiaofeng Chen, Byunghwan Kang, Jackie Chen, Yadong Cao, Vicki Luo, Arthur Yung-Chi Cheng, Andrew Hyeongjoo Moon, Xiqiang Yang, Ajay Virkar
  • Publication number: 20230250535
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Application
    Filed: March 9, 2023
    Publication date: August 10, 2023
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Patent number: 11668010
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: June 6, 2023
    Assignee: C3 Nano, Inc.
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Patent number: 11498129
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: November 15, 2022
    Assignee: C3 Nano, Inc.
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20220132672
    Abstract: A method is described for method for patterning a metal layer interfaced with a transparent conductive film, in which the method comprises contacting a structure through a patterned mask with an etching solution comprising Fe+3 ions, wherein the structure comprises the metal layer comprising copper, nickel, aluminum or alloys thereof covering at least partially a transparent conductive film with conductive elements comprising silver, to expose a portion of the transparent conductive film. Etching solutions and the etched structures are also described.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Inventors: Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20210340386
    Abstract: Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
    Type: Application
    Filed: July 8, 2021
    Publication date: November 4, 2021
    Inventors: Xiqiang Yang, Yadong Cao, Yongxing Hu, Hua Gu, Ying-Syi Li, Ajay Virkar
  • Patent number: 11111396
    Abstract: Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: September 7, 2021
    Assignee: C3 Nano, Inc.
    Inventors: Xiqiang Yang, Yadong Cao, Yongxing Hu, Hua Gu, Ying-Syi Li, Ajay Virkar
  • Publication number: 20210142926
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Application
    Filed: December 23, 2020
    Publication date: May 13, 2021
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Patent number: 10902965
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: January 26, 2021
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20200245457
    Abstract: Structures are described having thin flexible polymer substrates with electrically conductive films on each opposing surface while having high optical transmittance and good optical properties. The structures can have total thicknesses of no more than about 30 microns and good flexibility. Processing approaches are described that allow for the coating of the very thin structures by providing support through the coating process. The structures are demonstrated to have good durability under conditions designed to test accelerated wear for touch sensor use.
    Type: Application
    Filed: January 28, 2019
    Publication date: July 30, 2020
    Inventors: Xiaofeng Chen, Byunghwan Kang, Jackie Chen, Yadong Cao, Vicki Luo, Arthur Yung-Chi Cheng, Andrew Hyeongjoo Moon, Xiqiang Yang, Ajay Virkar
  • Publication number: 20190364665
    Abstract: A method is described for method for patterning a metal layer interfaced with a transparent conductive film, in which the method comprises contacting a structure through a patterned mask with an etching solution comprising Fe+3 ions, wherein the structure comprises the metal layer comprising copper, nickel, aluminum or alloys thereof covering at least partially a transparent conductive film with conductive elements comprising silver, to expose a portion of the transparent conductive film. Etching solutions and the etched structures are also described.
    Type: Application
    Filed: May 21, 2019
    Publication date: November 28, 2019
    Inventors: Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20190066863
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Patent number: 10147512
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: December 4, 2018
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20170169911
    Abstract: Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 15, 2017
    Inventors: Yongxing Hu, Alexander Seung-il Hong, Ying-Syi Li, Xiqiang Yang, Yadong Cao, Ajay Virkar
  • Publication number: 20170067166
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Patent number: 9530534
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: December 27, 2016
    Assignee: C3Nano Inc.
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-Il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Publication number: 20160293288
    Abstract: Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
    Type: Application
    Filed: August 11, 2015
    Publication date: October 6, 2016
    Inventors: Yongxing Hu, Xiqiang Yang, Ying-Syi Li, Alexander Seung-il Hong, Melanie Mariko Inouye, Yadong Cao, Ajay Virkar
  • Publication number: 20160108256
    Abstract: Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
    Type: Application
    Filed: February 20, 2015
    Publication date: April 21, 2016
    Inventors: Xiqiang Yang, Yadong Cao, Yongxing Hu, Hua Gu, Ying-Syi Li, Ajay Virkar