Patents by Inventor Yafan Zhang

Yafan Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230173948
    Abstract: A battery control assembly for a battery system. The battery control assembly includes a plurality of cell-level control units, each including a cell-level switching unit being operable as a cell-level inverter. The plurality of cell-level control units are arranged in three control unit strings and the cell-level control units of each control unit string are electrically connected in series. First ends of each control unit string are electrically connected to a corresponding AC charging terminal. Second ends of the control unit strings are electrically connected in series via a first end switch and a second end switch. Moreover, at least one of the control unit strings includes an inner connection terminal. Furthermore, an electric drivetrain for an electric vehicle having such a battery control assembly is presented.
    Type: Application
    Filed: December 5, 2022
    Publication date: June 8, 2023
    Inventors: Torbjorn LARSSON, Jonas FORSSELL, Robert ERIKSSON, Nikitas SIDIROPOULOS, Markus EKSTRÖM, Narendar Rao Gannamaneni, Jonas BJÖRKHOLTZ, Yafan ZHANG
  • Patent number: 8847337
    Abstract: Processes and fixtures for producing electromechanical devices, and particularly three-dimensional electromechanical devices such as inertial measurement units (IMUs), through the use of a fabrication process and a three-dimensional assembly process that entail joining single-axis device-IC chips while positioned within a mounting fixture that maintains the orientations and relative positions of the chips during the joining operation.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: September 30, 2014
    Assignee: Evigia Systems, Inc.
    Inventors: Navid Yazdi, Yafan Zhang, Weibin Zhu
  • Patent number: 8791842
    Abstract: Embodiments of the present invention disclose a data decoding method and apparatus, relate to the field of wireless communications, and can improve a resource utilization rate in a decoding process, thereby improving decoding efficiency. The method of the present invention includes: dividing a to-be-decoded data transport block into N code blocks, where N is an integer greater than or equal to 2; and decoding the N code blocks in parallel according to a reverse direction of encoding. The present invention is applicable to data decoding.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: July 29, 2014
    Assignee: Huawel Technologies Co., Ltd.
    Inventors: Yafan Zhang, Jiaji Zhang
  • Patent number: 8677802
    Abstract: A sensing module and method for monitoring various physical parameters, and particularly environmental parameters to which a living body may be subjected, for example, impacts and shock wave pulses. The module at least one energy storage device and at least one set of electromechanical sensing elements contained in a housing. The sensing elements are responsive to an external environmental input, and each sensing element defines an open electrical path when not subjected to the input, is operable to define a closed electrical path that produces an output in response to the input if the input exceeds a threshold of the sensing element. The module generates data corresponding to the outputs of the sensing elements and records the data.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: March 25, 2014
    Assignee: Evigia Systems, Inc.
    Inventors: Robert William Hower, Yafan Zhang, Navid Yazdi
  • Publication number: 20130278450
    Abstract: Embodiments of the present invention disclose a data decoding method and apparatus, relate to the field of wireless communications, and can improve a resource utilization rate in a decoding process, thereby improving decoding efficiency. The method of the present invention includes: dividing a to-be-decoded data transport block into N code blocks, where N is an integer greater than or equal to 2; and decoding the N code blocks in parallel according to a reverse direction of encoding. The present invention is applicable to data decoding.
    Type: Application
    Filed: March 21, 2013
    Publication date: October 24, 2013
    Inventors: Yafan ZHANG, Jiaji ZHANG
  • Publication number: 20120286380
    Abstract: Processes and fixtures for producing electromechanical devices, and particularly three-dimensional electromechanical devices such as inertial measurement units (IMUs), through the use of a fabrication process and a three-dimensional assembly process that entail joining single-axis device-IC chips while positioned within a mounting fixture that maintains the orientations and relative positions of the chips during the joining operation.
    Type: Application
    Filed: February 24, 2012
    Publication date: November 15, 2012
    Applicant: EVIGIA SYSTEMS
    Inventors: Navid Yazdi, Yafan Zhang, Weibin Zhu
  • Patent number: 8119498
    Abstract: A wafer bonding process that compensates for curvatures in wafer surfaces, and a wafer stack produced by the bonding process. The process entails forming a groove in a surface of a first wafer, depositing a bonding stack on a surface of a second wafer, aligning and mating the first and second wafers so that the bonding stack on the second wafer contacts a bonding site on the first wafer, and then heating the first and second wafers to reflow the bonding stack. The groove either surrounds the bonding site or lies entirely within the bonding site, and the heating step forms a molten bonding material, causes at least a portion of the molten bonding material to flow into the groove, and forms a bonding structure that bonds the second wafer to the first wafer. Bonding stacks having different lateral surface areas can be deposited to form bonding structures of different heights to compensate for variations in the wafer gap.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: February 21, 2012
    Assignee: Evigia Systems, Inc.
    Inventors: Guangqing Mengi, Yafan Zhang, Navid Yazdi
  • Publication number: 20110203347
    Abstract: A sensing module and method for monitoring various physical parameters, and particularly environmental parameters to which a living body may be subjected, for example, impacts and shock wave pulses. The module at least one energy storage device and at least one set of electromechanical sensing elements contained in a housing. The sensing elements are responsive to an external environmental input, and each sensing element defines an open electrical path when not subjected to the input, is operable to define a closed electrical path that produces an output in response to the input if the input exceeds a threshold of the sensing element. The module generates data corresponding to the outputs of the sensing elements and records the data.
    Type: Application
    Filed: August 24, 2010
    Publication date: August 25, 2011
    Applicant: EVIGIA SYSTEMS INC.
    Inventors: Robert William Hower, Yafan Zhang, Navid Yazdi
  • Publication number: 20110009773
    Abstract: Implantable sensing modules and methods for monitoring various physical parameters, including physical parameters of a living body and environmental parameters to which the living body may be subjected, for example, impacts. A method for monitoring impacts to which a living body is subjected entails the use of an implantable sensing module that has a rigid housing containing at least one energy storage device and at least one electromechanical sensing element that is responsive to impacts. The module generates data corresponding to impacts to which the electromechanical sensing element is subjected, and records the data in memory. The module is preferably implanted in a living body so that the module is connected to a rigid portion of the living body, in particular, a bone or tooth.
    Type: Application
    Filed: August 13, 2010
    Publication date: January 13, 2011
    Applicant: EVIGIA SYSTEMS, INC.
    Inventors: Robert William Hower, Navid Yazdi, Yafan Zhang
  • Publication number: 20100072555
    Abstract: A wafer bonding process that compensates for curvatures in wafer surfaces, and a wafer stack produced by the bonding process. The process entails forming a groove in a surface of a first wafer, depositing a bonding stack on a surface of a second wafer, aligning and mating the first and second wafers so that the bonding stack on the second wafer contacts a bonding site on the first wafer, and then heating the first and second wafers to reflow the bonding stack. The groove either surrounds the bonding site or lies entirely within the bonding site, and the heating step forms a molten bonding material, causes at least a portion of the molten bonding material to flow into the groove, and forms a bonding structure that bonds the second wafer to the first wafer. Bonding stacks having different lateral surface areas can be deposited to form bonding structures of different heights to compensate for variations in the wafer gap.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 25, 2010
    Applicant: EVIGIA SYSTEMS, INC.
    Inventors: Guangqing Meng, Yafan Zhang, Navid Yazdi
  • Patent number: 6968743
    Abstract: The present invention defines an implantable microfabricated sensor device for measuring a physiologic parameter of interest within a patient. The sensor device includes a substrate and a sensor, integrally formed with the substrate, that is responsive to the physiologic parameter of interest. At least one conductive path is integrally formed with said substrate and coupled to the sensor. Connected to the conductive path is an active circuit. The active circuit is further electrically connected to the sensor.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: November 29, 2005
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Collin A. Rich, Yafan Zhang, Nader Najafi
  • Patent number: 6935010
    Abstract: Micromachine fluidic apparatus incorporates a free-standing tube section and electrodes to actuate or control the movement of the tube section, or to sense the movement of the tube section, or both. Electronic circuitry, which may be disposed on the same substrate as the fluidic portion of the apparatus, is used in conjunction with the tube and electrodes in conjunction with a variety of different applications, including fluid flow measurement, fluid density measurement, fluid viscosity measurement, fluid transport, separation and/or mixing. According to a particular embodiment, the free-standing section of the tube is resonated for fluid flow and density measurements according to the Coriolis effect. Capacitive/electrostatic actuation techniques are used to control or resonate the free-standing section of the tube, and to detect variations in tube movement.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: August 30, 2005
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Srinivas Tadigadapa, Chialun Tsai, Yafan Zhang, Nader Najafi
  • Patent number: 6926670
    Abstract: The present invention relates to an implantable microfabricated sensor device and system for measuring a physiologic parameter of interest within a patient. The implantable device is micro electromechanical system (MEMS) device and includes a substrate having an integrated inductor and at least one sensor formed thereon. A plurality of conductive paths electrically connect the integrated inductor with the sensor. Cooperatively, the integrated inductor, sensor and conductive paths defining an LC tank resonator.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: August 9, 2005
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Collin A. Rich, Yafan Zhang, Nader Najafi, Matthew Z. Straayer, Sonbol Massoud-Ansari
  • Publication number: 20030061889
    Abstract: Micromachine fluidic apparatus incorporates a free-standing tube section and electrodes to actuate or control the movement of the tube section, or to sense the movement of the tube section, or both. Electronic circuitry, which may be disposed on the same substrate as the fluidic portion of the apparatus, is used in conjunction with the tube and electrodes in conjunction with a variety of different applications, including fluid flow measurement, fluid density measurement, fluid viscosity measurement, fluid transport, separation and/or mixing. According to a particular embodiment, the freestanding section of the tube is resonated for fluid flow and density measurements according to the Coriolis effect. Capacitive/electrostatic actuation techniques are used to control or resonate the free-standing section of the tube, and to detect variations in tube movement.
    Type: Application
    Filed: September 3, 2002
    Publication date: April 3, 2003
    Inventors: Srinivas Tadigadapa, Chialun Tsai, Yafan Zhang, Nader Najafi
  • Patent number: 6499354
    Abstract: Unwanted gasses created during bonding within micromachined vacuum cavities are reduced in a manner conducive to mass manufacturing. Two broad approaches may be applied separately or in combination according to the invention. One method is to deposit a barrier layer within the cavity (for example, on an exposed surface of the substrate). Such a layer not only provides a barrier against gases diffusing out of the substrate, but is also chosen so as to not outgas by itself. Another approach is to use a material which, instead of, or in addition to, acting as a barrier layer, acts as a getterer, such that it reacts with and traps unwanted gases. Incorporation of a getterer according to the invention can be as straightforward as depositing a thin metal layer on the substrate, which reacts to remove the impurities, or can be more elaborate through the use of a non-evaporable getter in a separate cavity in gaseous communication with the cavity.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: December 31, 2002
    Assignee: Integrated Sensing Systems (ISSYS), Inc.
    Inventors: Nader Najafi, Sonbol Massoud-Ansari, Srinivas Tadigadapa, Yafan Zhang
  • Patent number: 6477901
    Abstract: Micromachine fluidic apparatus incorporates a free-standing tube section and electrodes to actuate or control the movement of the tube section, or to sense the movement of the tube section, or both. Electronic circuitry, which may be disposed on the same substrate as the fluidic portion of the apparatus, is used in conjunction with the tube and electrodes in conjunction with a variety of different applications, including fluid flow measurement, fluid density measurement, fluid viscosity measurement, fluid transport, separation and/or mixing. According to a particular embodiment, the free-standing section of the tube is resonated for fluid flow and density measurements according to the Coriolis effect. Capacitive/electrostatic actuation techniques are used to control or resonate the free-standing section of the tube, and to detect variations in tube movement.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: November 12, 2002
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Srinivas Tadigadapa, Chialun Tsai, Yafan Zhang, Nader Najafi
  • Publication number: 20020151816
    Abstract: The present invention relates to an implantable microfabricated sensor device and system for measuring a physiologic parameter of interest within a patient. The implantable device is micro electromechanical system (MEMS) device and includes a substrate having an integrated inductor and at least one sensor formed thereon. A plurality of conductive paths electrically connect the integrated inductor with the sensor. Cooperatively, the integrated inductor, sensor and conductive paths defining an LC tank resonator.
    Type: Application
    Filed: January 22, 2002
    Publication date: October 17, 2002
    Inventors: Collin A. Rich, Yafan Zhang, Nader Najafi, Matthew Z. Straayer, Sonbol Massoud-Ansari
  • Publication number: 20020115920
    Abstract: The present invention defines an implantable microfabricated sensor device for measuring a physiologic parameter of interest within a patient. The sensor device includes a substrate and a sensor, integrally formed with the substrate, that is responsive to the physiologic parameter of interest. At least one conductive path is integrally formed with said substrate and coupled to the sensor. Connected to the conductive path is an active circuit. The active circuit is further electrically connected to the sensor.
    Type: Application
    Filed: January 22, 2002
    Publication date: August 22, 2002
    Inventors: Collin A. Rich, Yafan Zhang, Nader Najafi
  • Patent number: 6338284
    Abstract: Structures and methods are disclosed in conjunction with the fabrication of electrical lead transfer feedthroughs with respect to a sealed cavity. In some applications such as capacitive pressure sensing, the cavity may include an outer wall, in which case the electrically insulating barrier is preferably U-shaped, with the ends of the U terminating at the outer wall. The feedthrough section may alternatively take the form of an island of conductive material surrounded by the electrically insulating barrier, thus assuming an O-shape. The cavity may be evacuated or filled with specific gases at specific pressures. As such, the invention finds application in the packaging (vacuum or controlled environment) and production of a variety of transducers including but not limited to pressure sensors, flow sensors, optical devices (e.g., infrared detectors, ccd camera, and flat-panel displays) and resonating devices, such as gyroscopes, accelerometers, yaw sensors, telecommunication devices, etc.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: January 15, 2002
    Assignee: Integrated Sensing Systems (ISSYS) Inc.
    Inventors: Nader Najafi, Yafan Zhang, Terry Hull