Patents by Inventor Yahan Hua

Yahan Hua has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10141787
    Abstract: The present invention provides a receiving circuit for magnetic coupling resonant wireless power transmission comprising: a resonant circuit, which comprises a resonant coil and a resonant capacitor; a rectifying circuit, the input of which is electrically connected to the two terminals of the resonant capacitor; a storage capacitor, the two terminals of which are electrically connected to the output of rectifying circuit; and a DC-DC converter, the input of which is electrically connected to the two terminals of the storage capacitor and the output of which is electrically connected to a rechargeable battery. The receiving circuit for magnetic coupling resonant wireless power transmission of the present invention can save energy and has high charge efficiency.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: November 27, 2018
    Assignee: Eaton Capital Unlimited Company
    Inventors: Gerald Zheng, Jack Gu, Bruce Wu, Tiefu Zhao, Jun Xu, Birger Pahl, Yahan Hua
  • Patent number: 10056851
    Abstract: A system and method for estimating operating characteristics of an induction motor is disclosed. The system includes a motor control device that is electrically connectable between a motor and a power source. The motor control device includes a plurality of switching devices comprising at least one thyristor corresponding to a respective phase of the motor. The motor control device also includes a controller programmed to disconnect the power source from the motor for a predetermined time period following a first plurality of cycles of a mains phase voltage of the power source. The controller is further programmed to measure a back-emf voltage during the predetermined time period, estimate an operating characteristic of the motor from the measured back-emf voltage, and trigger the plurality of switching devices to reconnect the power source to the motor following estimation of the operating characteristic.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: August 21, 2018
    Assignee: Eaton Corporation
    Inventors: Dongxiao Wu, Bruno Patrice-Bernard Lequesne, Yahan Hua, Vijay Bhavaraju, Kaijam M. Woodley, Steven Andrew Dimino
  • Patent number: 10038324
    Abstract: A wireless power transfer circuit can include an input port that can be configured to couple to a power source, an ac excitation circuit having a port coupled to the input port, a resonant circuit coupled to the ac excitation circuit, and a controller circuit that can be configured to operate the ac excitation circuit. The wireless power transfer circuit can operate to inductively transfer power from the resonant circuit and the controller circuit can be configured to change an operating frequency of the ac excitation circuit and change a configuration of the resonant circuit responsive a change in indicated efficiency of the wireless power transfer.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: July 31, 2018
    Assignee: Eaton Intelligent Power Limited
    Inventors: Prasanna Nirantare, Tiefu Zhao, Birger Pahl, Milind Kothekar, Yahan Hua
  • Publication number: 20170070082
    Abstract: The present invention provides a receiving circuit for magnetic coupling resonant wireless power transmission comprising: a resonant circuit, which comprises a resonant coil and a resonant capacitor; a rectifying circuit, the input of which is electrically connected to the two terminals of the resonant capacitor; a storage capacitor, the two terminals of which are electrically connected to the output of rectifying circuit; and a DC-DC converter, the input of which is electrically connected to the two terminals of the storage capacitor and the output of which is electrically connected to a rechargeable battery. The receiving circuit for magnetic coupling resonant wireless power transmission of the present invention can save energy and has high charge efficiency.
    Type: Application
    Filed: March 3, 2015
    Publication date: March 9, 2017
    Applicant: COOPER INDUSTRIES HOLDINGS
    Inventors: GERALD ZHENG, JACK GU, BRUCE WU, TIEFU ZHAO, JUN XU, BIRGER PAHL, YAHAN HUA
  • Publication number: 20160197485
    Abstract: A wireless power transfer circuit can include an input port that can be configured to couple to a power source, an ac excitation circuit having a port coupled to the input port, a resonant circuit coupled to the ac excitation circuit, and a controller circuit that can be configured to operate the ac excitation circuit. The wireless power transfer circuit can operate to inductively transfer power from the resonant circuit and the controller circuit can be configured to change an operating frequency of the ac excitation circuit and change a configuration of the resonant circuit responsive a change in indicated efficiency of the wireless power transfer.
    Type: Application
    Filed: January 6, 2015
    Publication date: July 7, 2016
    Inventors: Prasanna Nirantare, Tiefu Zhao, Birger Pahl, Milind Kothekar, Yahan Hua
  • Publication number: 20150349673
    Abstract: A system and method for estimating operating characteristics of an induction motor is disclosed. The system includes a motor control device that is electrically connectable between a motor and a power source. The motor control device includes a plurality of switching devices comprising at least one thyristor corresponding to a respective phase of the motor. The motor control device also includes a controller programmed to disconnect the power source from the motor for a predetermined time period following a first plurality of cycles of a mains phase voltage of the power source. The controller is further programmed to measure a back-emf voltage during the predetermined time period, estimate an operating characteristic of the motor from the measured back-emf voltage, and trigger the plurality of switching devices to reconnect the power source to the motor following estimation of the operating characteristic.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Inventors: Dongxiao Wu, Bruno Patrice-Bernard Lequesne, Yahan Hua, Vijay Bhavaraju, Kaijam M. Woodley, Steven Andrew Dimino
  • Patent number: 9160257
    Abstract: A system and method for automatically defining and tuning operating parameters for a motor control device with minimal or no operator input is disclosed. The system includes a motor control device electrically connectable to an AC motor and a controller that is programmed to define a motor start-up function based on a rated current of the motor, the motor start-up function comprising an initial torque factor and an initial ramp time. The controller also triggers switching devices of the motor according to the motor start-up function to inject current into the motor during a first trial run, monitors operating conditions of the motor and motor control device during the first trial run, modifies the motor start-up function based on the monitored operating conditions, and triggers the plurality of switching devices according to the modified motor start-up function to inject current into the motor during a subsequent trial run.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: October 13, 2015
    Assignee: Eaton Corporation
    Inventors: Yahan Hua, Dongxiao Wu, Bruno Patrice-Bernard Lequesne, David Lee Klapstein, Steven Andrew Dimino, Kaijam M. Woodley
  • Patent number: 9123466
    Abstract: Wireless power transfer systems include at least one foil-type transmitter/receiver coil with a plurality of turns, which is configured to reduce eddy current losses therein when energized to conduct an alternating current that supports inductive power transfer including coil-to-coil power electrical transfer, inductive heating, etc. The plurality of turns includes at least an outermost turn with a first arcuate-shaped corner having a concave inner surface, which faces an immediately adjacent one of the plurality of turns. The immediately adjacent one of the plurality of turns may also have a second arcuate-shaped corner with a concave inner surface facing an innermost one of the plurality of turns. The first arcuate-shaped corner may have a non-uniform radius of curvature and/or an innermost one of the plurality of turns may have an arcuate-shaped corner, which is a mirror image of the first arcuate-shaped corner when the coil is view in transverse cross-section.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: September 1, 2015
    Assignee: Eaton Corporation
    Inventors: Qingjie Zheng, Yilei Gu, Tangshun Wu, Tiefu Zhao, Jun Xu, Birger Pahl, Yahan Hua
  • Patent number: 9071074
    Abstract: A multi-standard compatible electric vehicle supply equipment includes a plurality of different electric vehicle connectors each of which corresponds to one of a plurality of different electric vehicle standards. A power converter inputs alternating current power and includes an output to output direct current power. A circuit is structured to selectively electrically connect a source of alternating current power to a number of the electric vehicle connectors, selectively electrically connect the output of the power converter to a selected one of the different electric vehicle connectors, employ a plurality of different communication protocols for the different electric vehicle connectors, detect connectivity of one of the different electric vehicle connectors with an electric vehicle and responsively select one of a plurality of different charging modes, and communicate with the electric vehicle through the selected one of the different electric vehicle connectors.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: June 30, 2015
    Assignee: EATON CORPORATION
    Inventors: Jiong Chen, Dongxiao Wu, Robert Yanniello, Yahan Hua, Bin Lu
  • Publication number: 20150180377
    Abstract: A system and method for automatically defining and tuning operating parameters for a motor control device with minimal or no operator input is disclosed. The system includes a motor control device electrically connectable to an AC motor and a controller that is programmed to define a motor start-up function based on a rated current of the motor, the motor start-up function comprising an initial torque factor and an initial ramp time. The controller also triggers switching devices of the motor according to the motor start-up function to inject current into the motor during a first trial run, monitors operating conditions of the motor and motor control device during the first trial run, modifies the motor start-up function based on the monitored operating conditions, and triggers the plurality of switching devices according to the modified motor start-up function to inject current into the motor during a subsequent trial run.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 25, 2015
    Inventors: Yahan Hua, Dongxiao Wu, Bruno Patrice-Bernard Lequesne, David Lee Klapstein, Steven Andrew Dimino, Kaijam M. Woodley
  • Publication number: 20150130583
    Abstract: Wireless power transfer systems include at least one foil-type transmitter/receiver coil with a plurality of turns, which is configured to reduce eddy current losses therein when energized to conduct an alternating current that supports inductive power transfer including coil-to-coil power electrical transfer, inductive heating, etc. The plurality of turns includes at least an outermost turn with a first arcuate-shaped corner having a concave inner surface, which faces an immediately adjacent one of the plurality of turns. The immediately adjacent one of the plurality of turns may also have a second arcuate-shaped corner with a concave inner surface facing an innermost one of the plurality of turns. The first arcuate-shaped corner may have a non-uniform radius of curvature and/or an innermost one of the plurality of turns may have an arcuate-shaped corner, which is a mirror image of the first arcuate-shaped corner when the coil is view in transverse cross-section.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: Eaton Corporation
    Inventors: Qingjie Zheng, Yilei Gu, Tangshun Wu, Tiefu Zhao, Jun Xu, Birger Pahl, Yahan Hua
  • Publication number: 20050083627
    Abstract: An exemplary parallel hybrid power filter apparatus for the electrified railway is described. The apparatus may include a group of LC reactive filter being purely tuned, an additional inductance, an active power filter and a coupling transformer. The active power filter may be controlled, e.g., as a current source in a composite control manner and can be connected in parallel to the additional inductance via the coupling transformer. The power filter can be connected to the reactive filter in series to form the parallel hybrid filtering system, and may be connected to the power grid via the circuit breaker or a thyristor. This exemplary system can be installed either in the traction substations or in the locomotives directly, or performed by ameliorating the original reactive filter. The active power filter does not add significant amount of cost, and may be simple and reliable in a control manner for the capacity of the APF is so small as to be less than one percent of that of the harmonics source.
    Type: Application
    Filed: September 27, 2004
    Publication date: April 21, 2005
    Inventors: Yue Wang, Zhao'an Wang, Jun Yang, Yong Duan, Zhiping Fu, Yahan Hua