Patents by Inventor Yakov Lerner

Yakov Lerner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9031705
    Abstract: A Kalina Cycle control system monitors one or more operating parameters of the Kalina Cycle. The system calculates one or more optimal operating parameters that allow the Kalina Cycle to operate at an increased efficiency. The system automatically adjusts the one or more actual operating parameters to the optimal parameters to increase the efficiency of the Kalina Cycle. Methods of increasing the efficiency of a Kalina Cycle include automatically adjusting one or more operating parameters to an optimal configuration.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: May 12, 2015
    Assignee: Recurrent Engineering, LLC
    Inventors: Henry A Mlcak, Mark D Mirolli, Yakov Lerner
  • Publication number: 20130231789
    Abstract: A Kalina Cycle control system monitors one or more operating parameters of the Kalina Cycle. The system calculates one or more optimal operating parameters that allow the Kalina Cycle to operate at an increased efficiency. The system automatically adjusts the one or more actual operating parameters to the optimal parameters to increase the efficiency of the Kalina Cycle. Methods of increasing the efficiency of a Kalina Cycle include automatically adjusting one or more operating parameters to an optimal configuration.
    Type: Application
    Filed: August 28, 2012
    Publication date: September 5, 2013
    Applicant: RECURRENT ENGINEERING, LLC
    Inventors: Henry A. Mlcak, Mark D. Mirolli, Yakov Lerner
  • Patent number: 8375719
    Abstract: The present invention is directed to a turbine seal system. The turbine seal system captures working fluid which is escaping from a closed loop thermodynamic cycle system, condenses the captured working fluid, and returns the condensate back to the thermodynamic cycle system. The turbine seal system is configured to apply nitrogen, or other non-condensable, or other material, to capture or mix with the escaping working fluid. The combined mixture of working fluid which escapes the turbine and the nitrogen utilized to capture the working fluid is evacuated by an exhaust compressor which maintains a desired vacuum in a gland seal compartment of the turbine seal. The combined mixture can then be sent to a condenser to condense the working fluid vapor and evacuate the non-condensables, forming a working stream. Once the non-condensables have been evacuated, the working stream is pumped to a higher pressure, and prepared to be re-introduced into the thermodynamic cycle system.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: February 19, 2013
    Assignee: Recurrent Engineering, LLC
    Inventors: Lawrence Rhodes, Yakov Lerner
  • Patent number: 8117844
    Abstract: The present invention relates to systems and methods for implementing a closed loop thermodynamic cycle utilizing a multi-component working fluid to acquire heat from two or more external heat source streams in an efficient manner utilizing countercurrent exchange. The liquid multi-component working stream is heated by a first external heat source stream at a first heat exchanger and is subsequently divided into a first substream and a second substream. The first substream is heated by the first working stream at a second external heat source stream at a second heat exchanger. The second substream is heated by the second working stream at a third heat exchanger. The first substream and the second substream are then recombined into a single working stream. The recombined working stream is heated by the second external heat source stream at a fourth heat exchanger.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: February 21, 2012
    Assignee: Recurrent Engineering, LLC
    Inventors: Mark D. Mirolli, Lawrence Rhodes, Yakov Lerner, Richard I. Pelletier
  • Publication number: 20080011457
    Abstract: The present invention relates to systems and methods for implementing a closed loop thermodynamic cycle utilizing a multi-component working fluid to acquire heat from two or more external heat source streams in an efficient manner utilizing countercurrent exchange. The liquid multi-component working stream is heated by a first external heat source stream at a first heat exchanger and is subsequently divided into a first substream and a second substream. The first substream is heated by the first working stream at a second external heat source stream at a second heat exchanger. The second substream is heated by the second working stream at a third heat exchanger. The first substream and the second substream are then recombined into a single working stream. The recombined working stream is heated by the second external heat source stream at a fourth heat exchanger.
    Type: Application
    Filed: July 17, 2007
    Publication date: January 17, 2008
    Inventors: Mark Mirolli, Lawrence Rhodes, Yakov Lerner, Richard Pelletier
  • Patent number: 7305829
    Abstract: The present invention relates to systems and methods for implementing a closed loop thermodynamic cycle utilizing a multi-component working fluid to acquire heat from two or more external heat source streams in an efficient manner utilizing countercurrent exchange. The liquid multi-component working stream is heated by a first external heat source stream at a first heat exchanger and is subsequently divided into a first substream and a second substream. The first substream is heated by the first working stream at a second external heat source stream at a second heat exchanger. The second substream is heated by the second working stream at a third heat exchanger. The first substream and the second substream are then recombined into a single working stream. The recombined working stream is heated by the second external heat source stream at a fourth heat exchanger.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: December 11, 2007
    Assignee: Recurrent Engineering, LLC
    Inventors: Mark D. Mirolli, Lawrence Rhodes, Yakov Lerner, Richard I. Pelletier
  • Publication number: 20060277911
    Abstract: The present invention is directed to a turbine seal system. The turbine seal system captures working fluid which is escaping from a closed loop thermodynamic cycle system, condenses the captured working fluid, and returns the condensate back to the thermodynamic cycle system. The turbine seal system is configured to apply nitrogen, or other non-condensable, or other material, to capture or mix with the escaping working fluid. The combined mixture of working fluid which escapes the turbine and the nitrogen utilized to capture the working fluid is evacuated by an exhaust compressor which maintains a desired vacuum in a gland seal compartment of the turbine seal. The combined mixture can then be sent to a condenser to condense the working fluid vapor and evacuate the non-condensables, forming a working stream. Once the non-condensables have been evacuated, the working stream is pumped to a higher pressure, and prepared to be re-introduced into the thermodynamic cycle system.
    Type: Application
    Filed: May 10, 2006
    Publication date: December 14, 2006
    Inventors: Lawrence Rhodes, Yakov Lerner
  • Publication number: 20050066660
    Abstract: The present invention relates to systems and methods for implementing a closed loop thermodynamic cycle utilizing a multi-component working fluid to acquire heat from two or more external heat source streams in an efficient manner utilizing countercurrent exchange. The liquid multi-component working stream is heated by a first external heat source stream at a first heat exchanger and is subsequently divided into a first substream and a second substream. The first substream is heated by the first working stream at a second external heat source stream at a second heat exchanger. The second substream is heated by the second working stream at a third heat exchanger. The first substream and the second substream are then recombined into a single working stream. The recombined working stream is heated by the second external heat source stream at a fourth heat exchanger.
    Type: Application
    Filed: May 7, 2004
    Publication date: March 31, 2005
    Inventors: Mark Mirolli, Lawrence Rhodes, Yakov Lerner, Richard Pelletier
  • Publication number: 20020053196
    Abstract: An improved apparatus and method for transporting gas through long pipelines is provided. The invention provides a binary mixture (e.g. ammonia-water) KALINA CYCLE® that is used as a bottoming cycle with a gas turbine. The non-isothermal boiling and condensation of the binary mixture achieves a high degree of recuperation. By throttling a part of the binary mixture, cooling is provided to the inlet air chiller for the gas turbine air compressor, which significantly improves the performance of the gas turbine. Thus, the invention provides a system for inlet air chilling integrated into a gas turbine-KALINA CYCLE® combined cycle used in a gas pipeline compressor station for pumping natural gas.
    Type: Application
    Filed: August 23, 2001
    Publication date: May 9, 2002
    Inventors: Yakov Lerner, Mark Mirolli, Richard Pelletier