Patents by Inventor Yama Akbari

Yama Akbari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220262496
    Abstract: Systems and methods for generating neuroprotective and cardioprotective nutrition programs are described herein. These neuroprotective and cardioprotective nutrition programs are especially applicable for patients at risk of cardiac arrest (e.g. due to hypoxia or ischemia of the brain or other body parts). The programs may feature caloric restriction, for example, short-term caloric restriction. The programs may be generated or iteratively modified based on the hemodynamic and metabolic state of the patient's brain, limbs, or other tissues or organs. Dynamic feedback about the patient's hemodynamic and metabolic state may be provided by techniques including, but not limited to, optical technology for quantitatively and noninvasively measuring blood flow, oxygenation, metabolic rate of oxygen, and perfusion/metabolism ratio in the brain, limbs, or other tissues or organs.
    Type: Application
    Filed: May 3, 2022
    Publication date: August 18, 2022
    Inventors: Yama Akbari, Matine Azadian, Robert H. Wilson
  • Publication number: 20220223257
    Abstract: Systems and methods for generating neuroprotective and cardioprotective nutrition programs are described herein. These neuroprotective and cardioprotective nutrition programs are especially applicable for patients at risk of cardiac arrest (e.g. due to hypoxia or ischemia of the brain or other body parts). The programs may feature caloric restriction, for example, short-term caloric restriction. The programs may be generated or iteratively modified based on the hemodynamic and metabolic state of the patient's brain, limbs, or other tissues or organs. Dynamic feedback about the patient's hemodynamic and metabolic state may be provided by techniques including, but not limited to, optical technology for quantitatively and noninvasively measuring blood flow, oxygenation, metabolic rate of oxygen, and perfusion/metabolism ratio in the brain, limbs, or other tissues or organs.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 14, 2022
    Inventors: Yama Akbari, Matine Azadian, Robert H. Wilson
  • Publication number: 20220192919
    Abstract: A multimodal optical imaging platform is used to obtain cerebral perfusion-metabolism mismatch metrics for rapid assessment of acute brain injury, ongoing (real-time) feedback to optimize cardiopulmonary resuscitation to improve neurological outcome, and rapid prognosis of recovery. Light of several wavelengths and types is delivered to the tissue, which is then absorbed and scattered by tissue components such as blood and cellular components. Some of this light scatters back to the surface, where it is captured by a detector. The resulting data are processed to obtain blood flow and oxygenation parameters, as well as tissue scattering. These parameters are then combined to calculate metabolism and flow-metabolism coupling/decoupling metrics, which are used to determine ischemic damage, ongoing need for optimal blood flow and oxygenation, and to predict cerebral recovery in patients with acute brain injury during and immediately after cardiac arrest, stroke, traumatic brain injury, etc.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Inventors: Robert H. Wilson, Christian Crouzet, Yama Akbari, Bernard Choi, Bruce J. Tromberg
  • Publication number: 20220079840
    Abstract: A multimodal optical imaging platform is used to obtain cerebral perfusion-metabolism mismatch metrics for rapid assessment of acute brain injury, ongoing (real-time) feedback to optimize cardiopulmonary resuscitation to improve neurological outcome, and rapid prognosis of recovery. Light of several wavelengths and types is delivered to the tissue, which is then absorbed and scattered by tissue components such as blood and cellular components. Some of this light scatters back to the surface, where it is captured by a detector. The resulting data are processed to obtain blood flow and oxygenation parameters, as well as tissue scattering. These parameters are then combined to calculate metabolism and flow-metabolism coupling/decoupling metrics, which are used to determine ischemic damage, ongoing need for optimal blood flow and oxygenation, and to predict cerebral recovery in patients with acute brain injury during and immediately after cardiac arrest, stroke, traumatic brain injury, etc.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Inventors: Robert H. Wilson, Christian Crouzet, Yama Akbari, Bernard Choi, Bruce J. Tromberg
  • Publication number: 20220032074
    Abstract: Electrophysiologic biomarkers for prognostication of neurological outcome are described herein. An inverse correlation was found between timing of a cortical spreading depolarization (SD) wave and neurological outcome as tested at 24 hours post-CPR. Additionally, a minor image of this SD was identified as a “repolarization (RP) wave.” Quantifying features of SD and RP during cardiac arrest and cardiopulmonary resuscitation (CPR) provide important metrics for diagnosis and prognosis of neurological injury from hypoxia-ischemia and can serve as an early prognostication tool for predicting outcome at subsequent days after successful CPR. This discovery may also allow for novel therapeutic interventions to improve neurological recovery after hypoxia-ischemia insults.
    Type: Application
    Filed: September 23, 2019
    Publication date: February 3, 2022
    Inventors: Yama Akbari, Robert H. Wilson, Christian Crouzet, Bernard Choi, Bruce J. Tromberg
  • Publication number: 20210338092
    Abstract: A portable device for quantitative measurement of tissue autoregulation and neurovascular coupling via portable measurement of blood flow, oxygenation, metabolism, and/or EEG signals and methods for using said device. The device may comprise a body and a plurality of legs pivotably attached to the body. The plurality of legs may comprise at least one reference electrode leg and at least one measurement electrode leg for electrical measurement, and an optical detection fiber leg and at least one optical source fiber leg for optical blood flow, oxygenation, and metabolism measurement. The present invention is additionally directed to a portable device for blood flow measurement and therapeutic photobiomodulation. The device may comprise a body and a plurality of legs. The plurality of legs may comprise at least one optical detection fiber leg and at least one optical source fiber leg, and at least one leg for therapeutic photobiomodulation.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Inventors: Yama Akbari, Robert H. Wilson, Christian Crouzet, Thomas Milner, Bernard Choi
  • Publication number: 20200367761
    Abstract: The present invention is directed to a portable device for quantitative measurement of tissue autoregulation and neurovascular coupling via portable measurement of blood flow, oxygenation, metabolism, and/or EEG signals and methods for using said device. The device may comprise a body and a plurality of legs pivotably attached to the body. The plurality of legs may comprise at least one reference electrode leg and at least one measurement electrode leg for electrical measurement, and an optical detection fiber leg and at least one optical source fiber leg for optical blood flow, oxygenation, and metabolism measurement. The present invention is additionally directed to a portable device for blood flow measurement and therapeutic photobiomodulation. The device may comprise a body and a plurality of legs. The plurality of legs may comprise at least one optical detection fiber leg and at least one optical source fiber leg, and at least one leg for therapeutic photobiomodulation.
    Type: Application
    Filed: August 4, 2020
    Publication date: November 26, 2020
    Inventors: Yama Akbari, Robert H. Wilson, Christian Crouzet, Thomas Milner, Bernard Choi