Patents by Inventor Yaman Kumar
Yaman Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240362427Abstract: In implementations of systems for generating digital content, a computing device implements a generation system to receive a user input specifying a characteristic for digital content. The generation system generates input text based on the characteristic for processing by a first machine learning model. Output text generated by the first machine learning model based on processing the input text is received. The output text describes a digital content component. The generation system generates the digital content component by processing the output text using a second machine learning model. The generation system generates the digital content including the digital content component for display in a user interface based on the characteristic.Type: ApplicationFiled: April 28, 2023Publication date: October 31, 2024Applicant: Adobe Inc.Inventors: Mukul Gupta, Yaman Kumar, Rahul Gupta, Prerna Bothra, Mayur Hemani, Mayank Gupta, Gaurav Makkar
-
Publication number: 20240355020Abstract: In implementations of systems for digital content analysis, a computing device implements an analysis system to extract a first content component and a second content component from digital content to be analyzed based on content metrics. The analysis system generates first embeddings using a first machine learning model and second embedding using a second machine learning model. The first embeddings and the second embeddings are combined as concatenated embeddings. The analysis system generates an indication of a content metric for display in a user interface using a third machine learning model based on the concatenated embeddings.Type: ApplicationFiled: April 21, 2023Publication date: October 24, 2024Applicant: Adobe Inc.Inventors: Yaman Kumar, Somesh Singh, Seoyoung Park, Pranjal Prasoon, Nithyakala Sainath, Nisarg Shailesh Joshi, Nikitha Srikanth, Nikaash Puri, Milan Aggarwal, Jayakumar Subramanian, Ganesh Palwe, Balaji Krishnamurthy, Matthew William Rozen, Mihir Naware, Hyman Chung
-
Patent number: 12124683Abstract: Content creation techniques are described that leverage content analytics to provide insight and guidance as part of content creation. To do so, content features are extracted by a content analytics system from a plurality of content and used by the content analytics system as a basis to generate a content dataset. Event data is also collected by the content analytics system from an event data source. Event data describes user interaction with respective items of content, including subsequent activities in both online and physical environments. The event data is then used to generate an event dataset. An analytics user interface is then generated by the content analytics system using the content dataset and the event dataset and is usable to guide subsequent content creation and editing.Type: GrantFiled: January 10, 2024Date of Patent: October 22, 2024Assignee: Adobe Inc.Inventors: Yaman Kumar, Somesh Singh, William Brandon George, Timothy Chia-chi Liu, Suman Basetty, Pranjal Prasoon, Nikaash Puri, Mihir Naware, Mihai Corlan, Joshua Marshall Butikofer, Abhinav Chauhan, Kumar Mrityunjay Singh, James Patrick O'Reilly, Hyman Chung, Lauren Dest, Clinton Hansen Goudie-Nice, Brandon John Pack, Balaji Krishnamurthy, Kunal Kumar Jain, Alexander Klimetschek, Matthew William Rozen
-
Publication number: 20240345707Abstract: Content creation techniques are described that leverage content analytics to provide insight and guidance as part of content creation. To do so, content features are extracted by a content analytics system from a plurality of content and used by the content analytics system as a basis to generate a content dataset. Event data is also collected by the content analytics system from an event data source. Event data describes user interaction with respective items of content, including subsequent activities in both online and physical environments. The event data is then used to generate an event dataset. An analytics user interface is then generated by the content analytics system using the content dataset and the event dataset and is usable to guide subsequent content creation and editing.Type: ApplicationFiled: January 10, 2024Publication date: October 17, 2024Applicant: Adobe Inc.Inventors: Yaman Kumar, Somesh Singh, William Brandon George, Timothy Chia-chi Liu, Suman Basetty, Pranjal Prasoon, Nikaash Puri, Mihir Naware, Mihai Corlan, Joshua Marshall Butikofer, Abhinav Chauhan, Kumar Mrityunjay Singh, James Patrick O'Reilly, Hyman Chung, Lauren Dest, Clinton Hansen Goudie-Nice, Brandon John Pack, Balaji Krishnamurthy, Kunal Kumar Jain, Alexander Klimetschek, Matthew William Rozen
-
Publication number: 20240289380Abstract: Methods, computer systems, computer-storage media, and graphical user interfaces are provided for determining user affinities by tracking historical user interactions with tagged digital content and using the user affinities in content generation applications. Accordingly, the system may track user interactions with published digital content in order to generate user interaction reports whenever a user engages with the digital content. The system may aggregate the interaction reports to generate an affinity profile for a user or audience of users. A marketer may then generate digital content for a target user or audience of users and the system may process the digital content to generate a set of tags for the digital content. Based on the set of tags, the system may then evaluate the digital content in view of the affinity profile for the target user/audience to determine similarities or differences between the digital content and the affinity profile.Type: ApplicationFiled: May 6, 2024Publication date: August 29, 2024Inventors: Yaman Kumar, Vinh Ngoc Khuc, Vijay Srivastava, Umang Moorarka, Sukriti Verma, Simra Shahid, Shirsh Bansal, Shankar Venkitachalam, Sean Steimer, Sandipan Karmakar, Nimish Srivastav, Nikaash Puri, Mihir Naware, Kunal Kumar Jain, Kumar Mrityunjay Singh, Hyman Chung, Horea Bacila, Florin Silviu Lordache, Deepak Pai, Balaji Krishnamurthy
-
Publication number: 20240273377Abstract: Some embodiments described herein relate to a training module comprising a scanpath generation model training system. The training module may be used to generate a scanpath generation model. The training module may comprise an adversarial training neural network. Using training data, which includes a text input and a recorded scanpath corresponding to the text input, the adversarial training neural network is trained to generate a scanpath generation model. A scanpath may comprise a sequence of words and a corresponding sequence of fixation durations, wherein the sequence of words comprises one or more words comprising the text input. The training module may then output the trained scanpath generation model.Type: ApplicationFiled: February 15, 2023Publication date: August 15, 2024Inventors: Yaman Kumar, Varun Khurana
-
Patent number: 12008033Abstract: Methods, computer systems, computer-storage media, and graphical user interfaces are provided for determining user affinities by tracking historical user interactions with tagged digital content and using the user affinities in content generation applications. Accordingly, the system may track user interactions with published digital content in order to generate user interaction reports whenever a user engages with the digital content. The system may aggregate the interaction reports to generate an affinity profile for a user or audience of users. A marketer may then generate digital content for a target user or audience of users and the system may process the digital content to generate a set of tags for the digital content. Based on the set of tags, the system may then evaluate the digital content in view of the affinity profile for the target user/audience to determine similarities or differences between the digital content and the affinity profile.Type: GrantFiled: September 16, 2021Date of Patent: June 11, 2024Assignee: Adobe Inc.Inventors: Yaman Kumar, Vinh Ngoc Khuc, Vijay Srivastava, Umang Moorarka, Sukriti Verma, Simra Shahid, Shirsh Bansal, Shankar Venkitachalam, Sean Steimer, Sandipan Karmakar, Nimish Srivastav, Nikaash Puri, Mihir Naware, Kunal Kumar Jain, Kumar Mrityunjay Singh, Hyman Chung, Horea Bacila, Florin Silviu Iordache, Deepak Pai, Balaji Krishnamurthy
-
Publication number: 20240086457Abstract: A content analysis system provides content understanding for a content item using an attention aware multi-modal model. Given a content item, feature extractors extract features from content components of the content item in which the content components comprise multiple modalities. A cross-modal attention encoder of the attention aware multi-modal model generates an embedding of the content item using features extracted from the content components. A decoder of the attention aware multi-modal model generates an action-reason statement using the embedding of the content item from the cross-modal attention encoder.Type: ApplicationFiled: September 14, 2022Publication date: March 14, 2024Inventors: Yaman KUMAR, Vaibhav AHLAWAT, Ruiyi ZHANG, Milan AGGARWAL, Ganesh Karbhari PALWE, Balaji KRISHNAMURTHY, Varun KHURANA
-
Patent number: 11907508Abstract: Content creation techniques are described that leverage content analytics to provide insight and guidance as part of content creation. To do so, content features are extracted by a content analytics system from a plurality of content and used by the content analytics system as a basis to generate a content dataset. Event data is also collected by the content analytics system from an event data source. Event data describes user interaction with respective items of content, including subsequent activities in both online and physical environments. The event data is then used to generate an event dataset. An analytics user interface is then generated by the content analytics system using the content dataset and the event dataset and is usable to guide subsequent content creation and editing.Type: GrantFiled: April 12, 2023Date of Patent: February 20, 2024Assignee: Adobe Inc.Inventors: Yaman Kumar, Somesh Singh, William Brandon George, Timothy Chia-chi Liu, Suman Basetty, Pranjal Prasoon, Nikaash Puri, Mihir Naware, Mihai Corlan, Joshua Marshall Butikofer, Abhinav Chauhan, Kumar Mrityunjay Singh, James Patrick O'Reilly, Hyman Chung, Lauren Dest, Clinton Hansen Goudie-Nice, Brandon John Pack, Balaji Krishnamurthy, Kunal Kumar Jain, Alexander Klimetschek, Matthew William Rozen
-
Publication number: 20230252993Abstract: This disclosure describes one or more implementations of systems, non-transitory computer-readable media, and methods that recognize speech from a digital video utilizing an unsupervised machine learning model, such as a generative adversarial neural network (GAN) model. In one or more implementations, the disclosed systems utilize an image encoder to generate self-supervised deep visual speech representations from frames of an unlabeled (or unannotated) digital video. Subsequently, in one or more embodiments, the disclosed systems generate viseme sequences from the deep visual speech representations (e.g., via segmented visemic speech representations from clusters of the deep visual speech representations) utilizing the adversarially trained GAN model. Indeed, in some instances, the disclosed systems decode the viseme sequences belonging to the digital video to generate an electronic transcription and/or digital audio for the digital video.Type: ApplicationFiled: February 4, 2022Publication date: August 10, 2023Inventors: Yaman Kumar, Balaji Krishnamurthy
-
Publication number: 20230085466Abstract: Methods, computer systems, computer-storage media, and graphical user interfaces are provided for determining user affinities by tracking historical user interactions with tagged digital content and using the user affinities in content generation applications. Accordingly, the system may track user interactions with published digital content in order to generate user interaction reports whenever a user engages with the digital content. The system may aggregate the interaction reports to generate an affinity profile for a user or audience of users. A marketer may then generate digital content for a target user or audience of users and the system may process the digital content to generate a set of tags for the digital content. Based on the set of tags, the system may then evaluate the digital content in view of the affinity profile for the target user/audience to determine similarities or differences between the digital content and the affinity profile.Type: ApplicationFiled: September 16, 2021Publication date: March 16, 2023Inventors: Yaman Kumar, Vinh Ngoc Khuc, Vijay Srivastava, Umang Moorarka, Sukriti Verma, Simra Shahid, Shirsh Bansal, Shankar Venkitachalam, Sean Steimer, Sandipan Karmakar, Nimish Srivastav, Nikaash Puri, Mihir Naware, Kunal Kumar Jain, Kumar Mrityunjay Singh, Hyman Chung, Horea Bacila, Florin Silviu Iordache, Deepak Pai, Balaji Krishnamurthy
-
Patent number: 10937428Abstract: A pose-invariant visual speech recognition system obtains a single view input of a speaker, such as a single video stream captured by a single camera. The single view input provides a particular pose of the speaker, which refers to a view angle, relative to the lens or image capture component of the camera that captured the video of the speaker, at which the speaker's face is captured. The pose of the speaker is used to select a visual speech recognition model to use to generate a text label that is the words spoken by the speaker. One or more additional view angles of the speaker are also generated from the single view input of the speaker. These one or more additional view angles, along with the single view input of the speaker, are used by the selected visual speech recognition model to generate the text label for the speaker.Type: GrantFiled: March 11, 2019Date of Patent: March 2, 2021Assignee: Adobe Inc.Inventor: Yaman Kumar
-
Publication number: 20200294507Abstract: A pose-invariant visual speech recognition system obtains a single view input of a speaker, such as a single video stream captured by a single camera. The single view input provides a particular pose of the speaker, which refers to a view angle, relative to the lens or image capture component of the camera that captured the video of the speaker, at which the speaker's face is captured. The pose of the speaker is used to select a visual speech recognition model to use to generate a text label that is the words spoken by the speaker. One or more additional view angles of the speaker are also generated from the single view input of the speaker. These one or more additional view angles, along with the single view input of the speaker, are used by the selected visual speech recognition model to generate the text label for the speaker.Type: ApplicationFiled: March 11, 2019Publication date: September 17, 2020Applicant: Adobe Inc.Inventor: Yaman Kumar