Patents by Inventor Yaming Jin

Yaming Jin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050209349
    Abstract: The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
    Type: Application
    Filed: April 25, 2005
    Publication date: September 22, 2005
    Applicant: Conoco Inc.
    Inventors: Daxiang Wang, Baili Hu, Yaming Jin, Harold Wright
  • Patent number: 6911193
    Abstract: Embodiments include a method and apparatus for converting a hydrocarbon and oxygen feed stream to a product stream such as syngas, including multiple serially aligned reaction zones and multiple hydrocarbon feeds. The first reaction zone catalyzes the net partial oxidation of the feed hydrocarbon. The subsequent zones catalyze reactions such as the stream or dry reforming of hydrocarbons or the water gas shift reaction, depending on the stream composition in the vicinity of the zone, and the desired product stream composition.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: June 28, 2005
    Assignee: ConocoPhillips Company
    Inventors: Joe D. Allison, Sriram Ramani, Daxiang Wang, Tianyan Niu, Yaming Jin, Gloria I. Straguzzi
  • Patent number: 6896868
    Abstract: The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: May 24, 2005
    Assignee: ConocoPhillips Company
    Inventors: Daxiang Wang, Baili Hu, Yaming Jin, Harold A. Wright
  • Publication number: 20040221508
    Abstract: The present invention relates to improved catalyst compositions, as well as methods of making and using such compositions. In particular, preferred embodiments of the present invention comprise rare earth catalyst supports, catalyst compositions having rare earth supports, and methods of preparing and using the catalysts and supports. Accordingly, the present invention also encompasses an improved method for converting a hydrocarbon containing gas and an oxygen containing gas to a gas mixture comprising hydrogen and carbon monoxide, i.e., syngas, using the rare earth catalyst supports in accordance with the present invention. In addition, the present invention contemplates an improved method for converting hydrocarbon gas to liquid hydrocarbons using the novel syngas catalyst supports and compositions described herein.
    Type: Application
    Filed: May 21, 2002
    Publication date: November 11, 2004
    Applicant: Conoco Inc.
    Inventors: Yaming Jin, Tianyan Niu, Harold A. Wright
  • Publication number: 20040132833
    Abstract: A hydrothermally-stable catalyst, method for making the same, and process for producing hydrocarbon, wherein the catalyst is used in synthesis gas conversion to hydrocarbons. In one embodiment, the method comprises depositing a compound of a catalytic metal selected from Groups 8, 9, and 10 of the Periodic Table on a support material comprising boehmite to form a composite material; and calcining the composite material to form the catalyst. In other embodiments, the support material comprises synthetic boehmite, natural boehmite, pseudo-boehmite, or combinations thereof.
    Type: Application
    Filed: October 16, 2003
    Publication date: July 8, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Yaming Jin, Kandaswamy Jothimurugesan, Nithya Srinivasan
  • Publication number: 20040127587
    Abstract: A method is provided for forming a highly active Fischer-Tropsch catalyst using boehmite having a particular crystallite size. In this method, a support material comprising boehmite is contacted with a catalytic metal-containing compound to form a catalyst precursor. The boehmite is selected to have an average crystallite size in the range of from about 6 nanometers (nm) to about 30 nm. An alternate embodiment uses a mixture of boehmites with various average crystallite sizes in the range of from about 4 nm to about 30 nm, differing by at least by 1 nm. Subsequently, the catalyst precursor is calcined to convert the boehmite to a stabilized aluminum oxide structure, thereby forming a catalyst support having a good attrition resistance and a relatively high hydrothermal stability.
    Type: Application
    Filed: October 16, 2003
    Publication date: July 1, 2004
    Applicant: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Yaming Jin
  • Publication number: 20040127586
    Abstract: This invention relates to methods for making a stabilized transition alumina of enhanced hydrothermal stability, which include the introduction of at least one structural stabilizer; a steaming step before or after the introduction step, wherein steaming is effective in transforming a transition alumina at least partially to boehmite and/or pseudoboehmite; and a calcining step to create a stabilized transition alumina. The combination of the structural stabilizer and the steaming step is believed to impart high hydrothermal stability to the alumina crystal lattice. Particularly preferred structural stabilizers include boron, cobalt, and zirconium. The stabilized transition alumina is useful as a catalyst support for high water partial pressure environments, and is particularly useful for making a catalyst having improved hydrothermal stability. The invention more specifically discloses Fischer-Tropsch catalysts and processes for the production of hydrocarbons from synthesis gas.
    Type: Application
    Filed: October 16, 2003
    Publication date: July 1, 2004
    Applicant: ConocoPhillips Company
    Inventors: Yaming Jin, Rafael L. Espinoza, Nithya Srinivasan, Olga P. Ionkina
  • Publication number: 20040127352
    Abstract: Methods are disclosed for preparing hydrothermally-stable structurally-promoted refractory-oxide catalyst supports, which includes mixing precursors of the refractory oxide and of at least one structural promoter and calcining the mixture. The methods feature the incorporation of at least one structural promoter into the lattice of a refractory-oxide material such as alumina. The hydrothermally-stable structurally-promoted refractory-oxide catalyst supports are useful in hydrothermal catalytic processes such as Fischer-Tropsch reactions.
    Type: Application
    Filed: October 16, 2003
    Publication date: July 1, 2004
    Applicant: ConocoPhillips Company
    Inventors: Yaming Jin, Rafael L. Espinoza
  • Publication number: 20040033885
    Abstract: The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
    Type: Application
    Filed: August 15, 2002
    Publication date: February 19, 2004
    Applicant: Conoco Inc.
    Inventors: Daxiang Wang, Baili Hu, Yaming Jin, Harold A. Wright
  • Publication number: 20040002422
    Abstract: A process and system for producing industrial-scale quantities of highly dispersed, thermally stable catalysts is disclosed. The process, which may be continuous production or batch production, includes mixing together the desired catalyst precursor materials, a combustible organic material and a solvent; evaporating the solvent, combusting the catalyst intermediate; and shaping final catalyst.
    Type: Application
    Filed: June 27, 2002
    Publication date: January 1, 2004
    Applicant: Conoco Inc.
    Inventors: Daxiang Wang, Yaming Jin, Harold A. Wright, Carl Johnston
  • Publication number: 20030198592
    Abstract: Embodiments include a method and apparatus for converting a hydrocarbon and oxygen feed stream to a product stream such as syngas, including multiple serially aligned reaction zones and multiple hydrocarbon feeds. The first reaction zone catalyzes the net partial oxidation of the feed hydrocarbon. The subsequent zones catalyze reactions such as the stream or dry reforming of hydrocarbons or the water gas shift reaction, depending on the stream composition in the vicinity of the zone, and the desired product stream composition.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 23, 2003
    Applicant: Conoco Inc.
    Inventors: Joe D. Allison, Sriram Ramani, Daxiang Wang, Tianyan Niu, Yaming Jin, Gloria I. Straguzzi
  • Publication number: 20030181327
    Abstract: Catalysts with silica-encapsulated magnetic supports are disclosed, along with their manner of making and process for separating them from a product stream in a reactor. A preferred catalyst comprises a catalytically active metal, preferably cobalt, and appropriate promoters, a magnetic support, preferably comprising magnetite, and an encapsulating material, preferably silica, encapsulating the magnetic support.
    Type: Application
    Filed: March 19, 2002
    Publication date: September 25, 2003
    Applicant: Conoco Inc.
    Inventors: Joe D. Allison, Yaming Jin, Thomas D. Baugh
  • Publication number: 20030096880
    Abstract: Combustion dispersed metal-metal oxide catalysts that are highly active for catalyzing the net partial oxidation of methane to CO and H2 are disclosed, along with their manner of making and processes for producing synthesis gas employing the new catalysts. A preferred catalyst comprises rhodium nanoparticles, with or without a rare earth promoter, that is deposited on &agr;-alumina by combusting a mixture of catalyst precursor materials and a flammable organic compound. In a preferred syngas production process a stream of reactant gas mixture containing methane and O2 is passed over the catalyst in a short contact time reactor to efficiently produce a mixture of carbon monoxide and hydrogen at superatmospheric pressures.
    Type: Application
    Filed: October 29, 2002
    Publication date: May 22, 2003
    Applicant: Conoco Inc.
    Inventors: Daxiang Wang, Yaming Jin, Harold A. Wright, Rafael L. Espinoza